Suppr超能文献

高紫外线指数地区黑色素瘤前哨淋巴结转移风险预测模型的验证

Validation of risk prediction models for sentinel lymph node metastasis in melanoma in a high UV index region.

作者信息

Mesgarzadeh Sheyda, Amamoo Rosemond S, Ameneni Geethika, Gong Amanda H, Ayoade Oluwayemisi O, Stratton Delaney B, Latour Emile, Yu Wesley, Curiel-Lewandrowski Clara, Abraham Ivo, Fazel Mohammad

机构信息

University of Arizona College of Medicine Tucson, Tucson, Arizona.

University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona.

出版信息

JAAD Int. 2025 Jun 6;21:61-69. doi: 10.1016/j.jdin.2025.04.012. eCollection 2025 Aug.

Abstract

BACKGROUND

Risk prediction models may refine individualized selection for sentinel lymph node biopsy (SLNB) in melanoma.

OBJECTIVE

To evaluate the statistical accuracy and clinical utility of nomograms by the Melanoma Institute of Australia (MIA), Memorial Sloan Kettering Cancer Center (MSKCC), and University of Colorado in a Southern Arizona population.

METHODS

In this prognostic validation, statistical accuracy was assessed through discrimination, measured with receiver operating characteristic curves and calibration plots. Clinical utility was evaluated via decision curve analysis to determine the net benefit and number of net avoidable interventions achieved with nomogram use.

RESULTS

Among 712 melanoma cases included, model discrimination was highest for the MIA nomogram (C-statistic = 0.753; 95% confidence interval = 0.694-0.812), followed by MSKCC (0.729[0.671-0.787]), and University of Colorado (0.601[0.405-0.793]). The MIA and MSKCC nomograms were well-calibrated across clinically relevant risk thresholds. All nomograms achieved a net benefit and net reduction in avoidable SLNBs for risk thresholds ≥5%. There was minimal to no reduction in unnecessary interventions at age extremes (<50 and ≥ 80 years old) for specific risk strata and nomograms.

LIMITATIONS

This a 5-year retrospective study.

CONCLUSIONS

These nomograms can be used to support SLNB decision-making in this population but necessitate caution in patients at age extremes when used to reduce avoidable interventions.

摘要

背景

风险预测模型可能会优化黑色素瘤前哨淋巴结活检(SLNB)的个体化选择。

目的

评估澳大利亚黑色素瘤研究所(MIA)、纪念斯隆凯特琳癌症中心(MSKCC)和科罗拉多大学的列线图在亚利桑那州南部人群中的统计准确性和临床实用性。

方法

在这项预后验证中,通过受试者工作特征曲线和校准图测量的辨别力来评估统计准确性。通过决策曲线分析评估临床实用性,以确定使用列线图实现的净效益和净避免干预次数。

结果

在纳入的712例黑色素瘤病例中,MIA列线图的模型辨别力最高(C统计量=0.753;95%置信区间=0.694-0.812),其次是MSKCC(0.729[0.671-0.787])和科罗拉多大学(0.601[0.405-0.793])。MIA和MSKCC列线图在临床相关风险阈值范围内校准良好。对于风险阈值≥5%,所有列线图都实现了净效益和可避免的SLNB净减少。对于特定风险分层和列线图,在年龄极端情况(<50岁和≥80岁)下,不必要干预的减少最小或没有减少。

局限性

这是一项为期5年的回顾性研究。

结论

这些列线图可用于支持该人群的SLNB决策,但在用于减少可避免的干预措施时,对于年龄极端的患者需要谨慎使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6f/12269628/ec0423ecc11f/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验