Suppr超能文献

深度潜在力模型:用于贝叶斯深度学习的基于常微分方程的过程卷积

Deep latent force models: ODE-based process convolutions for Bayesian deep learning.

作者信息

Baldwin-McDonald Thomas, Shi Xinxing, Shen Mingxin, Álvarez Mauricio A

机构信息

Department of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL UK.

出版信息

Mach Learn. 2025;114(8):192. doi: 10.1007/s10994-025-06824-y. Epub 2025 Jul 15.

Abstract

Modelling the behaviour of highly nonlinear dynamical systems with robust uncertainty quantification is a challenging task which typically requires approaches specifically designed to address the problem at hand. We introduce a domain-agnostic model to address this issue termed the deep latent force model (DLFM), a deep Gaussian process with physics-informed kernels at each layer, derived from ordinary differential equations using the framework of process convolutions. Two distinct formulations of the DLFM are presented which utilise weight-space and variational inducing points-based Gaussian process approximations, both of which are amenable to doubly stochastic variational inference. We present empirical evidence of the capability of the DLFM to capture the dynamics present in highly nonlinear real-world multi-output time series data. Additionally, we find that the DLFM is capable of achieving comparable performance to a range of non-physics-informed probabilistic models on benchmark univariate regression tasks. We also empirically assess the negative impact of the inducing points framework on the extrapolation capabilities of LFM-based models.

摘要

用鲁棒不确定性量化对高度非线性动力系统的行为进行建模是一项具有挑战性的任务,通常需要专门设计的方法来解决手头的问题。我们引入了一个与领域无关的模型来解决这个问题,称为深度潜势力模型(DLFM),它是一种深度高斯过程,每层都有物理信息核,通过过程卷积框架从常微分方程导出。提出了DLFM的两种不同形式,它们利用权重空间和基于变分诱导点的高斯过程近似,这两种形式都适用于双随机变分推理。我们给出了DLFM捕捉高度非线性现实世界多输出时间序列数据中存在的动态的能力的经验证据。此外,我们发现DLFM在基准单变量回归任务中能够实现与一系列非物理信息概率模型相当的性能。我们还通过实验评估了诱导点框架对基于LFM的模型的外推能力的负面影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验