Chen Pengfei, Gong Huiyuan, Zhang Lei, Geng Yang
Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
Front Med (Lausanne). 2025 Jul 3;12:1603472. doi: 10.3389/fmed.2025.1603472. eCollection 2025.
This study investigates the use of CT radiomics combined with convolutional neural networks (CNN) to predict the malignancy of lung ground glass nodules (GGN), which are challenging to diagnose due to their ambiguous boundaries. The goal is to improve diagnostic accuracy and support personalized treatment planning.
Retrospective data from 670 patients with pulmonary nodules (2019-2023) were analyzed. CT images were preprocessed using Gaussian filtering and manually segmented to define regions of interest (ROI). A CNN model was trained using MATLAB's Deep Learning Toolbox, and its performance was compared to the Mayo and Brock models.
Key predictors of malignancy included nodule diameter, volume, mean CT value, and consolidation-to-tumor ratio (CTR). The CNN-based model achieved an AUC of 0.887, with 82.4% sensitivity and 75.5% specificity, outperforming existing models (Mayo: AUC = 0.655; Brock: AUC = 0.574). Validation accuracy reached 85.07%.
In this single-center retrospective study, integrating CT radiomics with CNN depicted promising potential for GGN malignancy prediction, though external validation remains necessary. These findings warrant verification in multicenter prospective cohorts.
本研究探讨使用CT影像组学结合卷积神经网络(CNN)来预测肺磨玻璃结节(GGN)的恶性程度,这类结节由于边界模糊,诊断具有挑战性。目的是提高诊断准确性并支持个性化治疗方案制定。
分析了670例肺结节患者(2019 - 2023年)的回顾性数据。CT图像经高斯滤波预处理并手动分割以定义感兴趣区域(ROI)。使用MATLAB的深度学习工具箱训练CNN模型,并将其性能与梅奥模型和布罗克模型进行比较。
恶性的关键预测因素包括结节直径、体积、平均CT值和实变与肿瘤比值(CTR)。基于CNN的模型AUC为0.887,灵敏度为82.4%,特异性为75.5%,优于现有模型(梅奥模型:AUC = 0.655;布罗克模型:AUC = 0.574)。验证准确率达到85.07%。
在这项单中心回顾性研究中,将CT影像组学与CNN相结合在GGN恶性预测方面显示出有前景的潜力,不过仍需要外部验证。这些发现有待在多中心前瞻性队列中进行验证。