Ahmed Alsarori Ahmed Mohammed, Sulaiman Mohd Herwan
Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 26600 Pekan Pahang, Malaysia.
MethodsX. 2025 Jun 27;15:103466. doi: 10.1016/j.mex.2025.103466. eCollection 2025 Dec.
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA's effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings.•Dual-output CNN-LSTM model optimized using EMA.•Continuous risk scores and binary diagnostic classification predictions.•EMA outperformed PSO and BMO in predictive accuracy and model robustness.
心血管疾病(CVD)仍然是全球范围内主要的死亡原因,这凸显了对准确且高效的预测模型的迫切需求。本研究提出了一种基于混合卷积神经网络-长短期记忆(CNN-LSTM)模型的双输出深度学习模型,并使用进化交配算法(EMA)进行优化。该模型可预测连续的风险评分和二元诊断结果,为定量评估和早期临床决策提供支持。EMA被用于超参数优化,相较于传统方法,其收敛性和泛化能力得到了提升。性能以使用粒子群优化(PSO)和藤壶交配优化(BMO)优化的CNN-LSTM模型为基准进行评估。基于EMA的模型取得了优异的结果,风险预测的平均绝对误差(MAE)为0.018,均方误差(MSE)为0.0006,均方根误差(RMSE)为0.024,决定系数(R²)为0.98。对于诊断任务,该模型的准确率达到70%,精确率达到80%。这些发现验证了EMA在调整双输出深度学习模型方面的有效性,并突出了其在临床环境中加强心血管风险分层和早期诊断的潜力。
•使用EMA优化的双输出CNN-LSTM模型。
•连续风险评分和二元诊断分类预测。
•在预测准确性和模型稳健性方面,EMA优于PSO和BMO。