Suppr超能文献

一种用于心血管疾病风险预测的进化机器学习算法。

An evolutionary machine learning algorithm for cardiovascular disease risk prediction.

机构信息

Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.

Institute of Public Health, Charité-Universitätsmedizin Berlin, Cooperate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

PLoS One. 2022 Jul 28;17(7):e0271723. doi: 10.1371/journal.pone.0271723. eCollection 2022.

Abstract

INTRODUCTION

This study developed a novel risk assessment model to predict the occurrence of cardiovascular disease (CVD) events. It uses a Genetic Algorithm (GA) to develop an easy-to-use model with high accuracy, calibrated based on the Isfahan Cohort Study (ICS) database.

METHODS

The ICS was a population-based prospective cohort study of 6,504 healthy Iranian adults aged ≥ 35 years followed for incident CVD over ten years, from 2001 to 2010. To develop a risk score, the problem of predicting CVD was solved using a well-designed GA, and finally, the results were compared with classic machine learning (ML) and statistical methods.

RESULTS

A number of risk scores such as the WHO, and PARS models were utilized as the baseline for comparison due to their similar chart-based models. The Framingham and PROCAM models were also applied to the dataset, with the area under a Receiver Operating Characteristic curve (AUROC) equal to 0.633 and 0.683, respectively. However, the more complex Deep Learning model using a three-layered Convolutional Neural Network (CNN) performed best among the ML models, with an AUROC of 0.74, and the GA-based eXplanaible Persian Atherosclerotic CVD Risk Stratification (XPARS) showed higher performance compared to the statistical methods. XPARS with eight features showed an AUROC of 0.76, and the XPARS with four features, showed an AUROC of 0.72.

CONCLUSION

A risk model that is extracted using GA substantially improves the prediction of CVD compared to conventional methods. It is clear, interpretable and can be a suitable replacement for conventional statistical methods.

摘要

简介

本研究开发了一种新的风险评估模型,以预测心血管疾病(CVD)事件的发生。它使用遗传算法(GA)开发了一个易于使用的模型,具有高精度,并根据伊斯法罕队列研究(ICS)数据库进行校准。

方法

ICS 是一项基于人群的前瞻性队列研究,共纳入 6504 名年龄≥35 岁的伊朗成年人,随访时间为 10 年,以观察 2001 年至 2010 年期间 CVD 的发生情况。为了开发风险评分,使用精心设计的 GA 解决了 CVD 预测问题,最后将结果与经典机器学习(ML)和统计方法进行比较。

结果

由于其类似图表模型,WHO 和 PARS 等多种风险评分模型被用作比较的基线。Framingham 和 PROCAM 模型也应用于该数据集,其接受者操作特征曲线下面积(AUROC)分别为 0.633 和 0.683。然而,使用三层卷积神经网络(CNN)的更复杂的深度学习模型在 ML 模型中表现最佳,AUROC 为 0.74,基于 GA 的可解释性波斯动脉粥样硬化 CVD 风险分层(XPARS)与统计方法相比表现更好。具有 8 个特征的 XPARS 的 AUROC 为 0.76,具有 4 个特征的 XPARS 的 AUROC 为 0.72。

结论

与传统方法相比,使用 GA 提取的风险模型可显著提高 CVD 的预测能力。它清晰、可解释,可作为传统统计方法的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f99/9333440/3dffa7bab9d4/pone.0271723.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验