Suppr超能文献

基于扩散的类药物分子生成式编辑与化学自然语言

Diffusion-based generative drug-like molecular editing with chemical natural language.

作者信息

Wang Jianmin, Zhou Peng, Wang Zixu, Long Wei, Chen Yangyang, No Kyoung Tai, Ouyang Dongsheng, Mao Jiashun, Zeng Xiangxiang

机构信息

Department of Integrative Biotechnology, Yonsei University, Incheon, 21983, South Korea.

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.

出版信息

J Pharm Anal. 2025 Jun;15(6):101137. doi: 10.1016/j.jpha.2024.101137. Epub 2024 Feb 11.

Abstract

Recently, diffusion models have emerged as a promising paradigm for molecular design and optimization. However, most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geometries, with limited research on molecular sequence diffusion models. The International Union of Pure and Applied Chemistry (IUPAC) names are more akin to chemical natural language than the Simplified Molecular Input Line Entry System (SMILES) for organic compounds. In this work, we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language (SMILES) and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language. We propose DiffIUPAC, a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings. Evaluation results demonstrate that our model outperforms existing methods and successfully captures the semantic rules of both chemical languages. Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints. Additionally, to illustrate the model's applicability in drug design, we conducted case studies in functional group editing, analogue design and linker design.

摘要

最近,扩散模型已成为分子设计和优化的一种有前途的范式。然而,大多数基于扩散的分子生成模型专注于对二维图或三维几何结构进行建模,对分子序列扩散模型的研究有限。对于有机化合物,国际纯粹与应用化学联合会(IUPAC)命名法比简化分子输入线输入系统(SMILES)更类似于化学自然语言。在这项工作中,我们应用IUPAC引导的条件扩散模型来促进从化学自然语言到化学语言(SMILES)的分子编辑,并探索扩散模型的预训练生成性能是否可以转移到化学自然语言。我们提出了DiffIUPAC,一种可控的分子编辑扩散模型,它将IUPAC名称转换为SMILES字符串。评估结果表明,我们的模型优于现有方法,并成功捕捉了两种化学语言的语义规则。化学空间和支架分析表明,该模型可以在指定约束内生成具有不同支架的相似化合物。此外,为了说明该模型在药物设计中的适用性,我们在官能团编辑、类似物设计和连接体设计方面进行了案例研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b1/12269398/0e11ad9a6ac6/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验