Meier Florian, Minoguchi Yuri, Sundelin Simon, Apollaro Tony J G, Erker Paul, Gasparinetti Simone, Huber Marcus
Atominstitut, Technische Universität Wien, Vienna, Austria.
Institute for Quantum Optics and Quantum Information - IQOQI Vienna, Austrian Academy of Sciences, Vienna, Austria.
Nat Phys. 2025;21(7):1147-1152. doi: 10.1038/s41567-025-02929-2. Epub 2025 Jun 2.
Physical devices operating out of equilibrium are affected by thermal fluctuations, limiting their operational precision. This issue is particularly pronounced at microscopic and quantum scales, where its mitigation requires additional entropy dissipation. Understanding this constraint is important for both fundamental physics and technological design. Clocks, for example, need a thermodynamic flux towards equilibrium to measure time, resulting in a minimum entropy dissipation per clock tick. Although classical and quantum models often show a linear relationship between precision and dissipation, the ultimate bounds on this relationship remain unclear. Here we present an autonomous quantum many-body clock model that achieves clock precision that scales exponentially with entropy dissipation. This is enabled by coherent transport in a spin chain with tailored couplings, where dissipation is confined to a single link. The result demonstrates that coherent quantum dynamics can surpass the traditional thermodynamic precision limits, potentially guiding the development of future high-precision, low-dissipation quantum devices.
非平衡运行的物理设备会受到热涨落的影响,从而限制其运行精度。这个问题在微观和量子尺度上尤为明显,在这些尺度下减轻该问题需要额外的熵耗散。理解这一限制对于基础物理学和技术设计都很重要。例如,时钟需要一个朝向平衡的热力学通量来测量时间,这导致每个时钟滴答有最小的熵耗散。尽管经典模型和量子模型通常显示精度与耗散之间存在线性关系,但这种关系的最终界限仍不明确。在这里,我们提出了一种自主量子多体时钟模型,该模型实现了与熵耗散呈指数比例缩放的时钟精度。这是通过具有定制耦合的自旋链中的相干输运来实现的,其中耗散被限制在单个链路中。该结果表明,相干量子动力学可以超越传统的热力学精度极限,这可能会指导未来高精度、低耗散量子设备的发展。