Jouanny Vincent, Frasca Simone, Weibel Vera Jo, Peyruchat Léo, Scigliuzzo Marco, Oppliger Fabian, De Palma Franco, Sbroggiò Davide, Beaulieu Guillaume, Zilberberg Oded, Scarlino Pasquale
Hybrid Quantum Circuits Laboratory (HQC), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Center for Quantum Science and Engineering, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Nat Commun. 2025 Apr 16;16(1):3396. doi: 10.1038/s41467-025-58595-8.
Superconducting microwave metamaterials offer enormous potential for quantum optics and information science, enabling the development of advanced quantum technologies for sensing and amplification. In the context of circuit quantum electrodynamics, such metamaterials can be implemented as coupled cavity arrays (CCAs). In the continuous effort to miniaturize quantum devices for increasing scalability, minimizing the footprint of CCAs while preserving low disorder becomes paramount. In this work, we present a compact CCA architecture using superconducting NbN thin films manifesting high kinetic inductance. The latter enables high-impedance CCA (~1.5 kΩ), while reducing the resonator footprint. We demonstrate its versatility and scalability by engineering one-dimensional CCAs with up to 100 resonators and with structures that exhibit multiple bandgaps. Additionally, we quantitatively investigate disorder in the CCAs using symmetry-protected topological SSH edge modes, from which we extract a resonator frequency scattering of . Our platform opens up exciting prospects for analog quantum simulations of many-body physics with ultrastrongly coupled emitters.
超导微波超材料在量子光学和信息科学领域具有巨大潜力,能够推动用于传感和放大的先进量子技术的发展。在电路量子电动力学的背景下,此类超材料可实现为耦合腔阵列(CCA)。为了提高量子器件的可扩展性而不断努力将其小型化,在保持低无序度的同时最小化CCA的占地面积变得至关重要。在这项工作中,我们展示了一种使用表现出高动态电感的超导NbN薄膜的紧凑型CCA架构。后者实现了高阻抗CCA(约1.5 kΩ),同时减小了谐振器的占地面积。我们通过设计具有多达100个谐振器且具有多个带隙结构的一维CCA,展示了其多功能性和可扩展性。此外,我们使用对称保护的拓扑SSH边缘模式对CCA中的无序进行了定量研究,从中提取了谐振器频率散射。我们的平台为使用超强耦合发射器进行多体物理的模拟量子模拟开辟了令人兴奋的前景。