Suyabatmaz Enes, Aroeira Gustavo J R, Ribeiro Raphael F
Department of Physics, Emory University, Atlanta, Georgia 30322, United States.
Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States.
J Phys Chem Lett. 2025 Jul 31;16(30):7530-7539. doi: 10.1021/acs.jpclett.5c01475. Epub 2025 Jul 18.
Vibrational strong light-matter coupling offers a promising approach for controlling chemical reactivity with infrared microcavities. While recent research has examined potential mechanisms for this phenomenon, many important questions remain, including what type of reactions can be modified and to what extent this modification can be achieved. In this study, we explore the dynamics of Blackbody Infrared Radiative Dissociation (BIRD) in microcavities under weak and strong light-matter interaction regimes. Using a Master equation approach, we simulate the effects of infrared field confinement and polariton formation on BIRD rates for diatomic molecules weakly coupled to the radiation field. We present a framework explaining how infrared microcavities influence BIRD kinetics, highlighting the importance of overtone transitions in the process. Our findings outline conditions under which significant enhancement or mild suppression of BIRD rates can be achieved, offering insights into practical limitations and new strategies for controlling chemistry within infrared resonators.
振动强光 - 物质耦合为利用红外微腔控制化学反应性提供了一种很有前景的方法。虽然最近的研究探讨了这种现象的潜在机制,但仍存在许多重要问题,包括哪些类型的反应可以被修改以及这种修改能达到何种程度。在本研究中,我们探索了在弱和强光 - 物质相互作用 regime 下微腔中黑体红外辐射解离(BIRD)的动力学。使用主方程方法,我们模拟了红外场限制和极化激元形成对与辐射场弱耦合的双原子分子的BIRD速率的影响。我们提出了一个框架,解释红外微腔如何影响BIRD动力学,强调了泛音跃迁在此过程中的重要性。我们的研究结果概述了可以实现BIRD速率显著增强或轻微抑制的条件,为红外谐振器内控制化学的实际限制和新策略提供了见解。