Ling Jing, Zhang Yuan, Hei Yongzhen, Kompa Julian, Yang Chen, Wang Bo, Zhang Junwei, Du Jiasheng, Rudi Tatjana, Zhang Kecheng, Sun Jingfu, Wang Wenjuan, Fabritz Sebastian, Li Yulong, Deng Wulan, Zou Peng, Chen Chunlai, Chen Zhixing
Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2426354122. doi: 10.1073/pnas.2426354122. Epub 2025 Jul 18.
Self-labeling protein tags are widely used in advanced bioimaging where dyes with high-photon budgets outperform their fluorescent protein counterparts. Further increasing the emitted photon numbers of dye-tag systems is actively pursued by both new fluorophore chemistry and protein engineering. By scrutinizing the protein microenvironment of fluorophores, here we propose that proximal thioether groups negatively affect the photostability of the dye-tag system. We attribute the disparity in photostability of rhodamine dyes on HaloTag, SNAP-tag, and TMP-tag3 to the influence of the inherent thioether linkage within the SNAP-tag and TMP-tag3. This photochemical pathway leads us to further devise tags with higher photostability. We first show that rhodamine dyes on TMP-tag3.1, which employs a proximity-induced SuFEx reaction instead of a thiol-acrylamide addition to replace the thioether adduct, achieve photon budgets comparable to those ligands on HaloTag. We further showcase that by mutating the methionine near the fluorophore pocket, HaloTag: M175L generally gives up to four times enhancement on photostability when labeled with red and far-red rhodamines. The enhancement of HaloTag modification is demonstrated with single-molecule fluorescence imaging, live-cell fluorescence imaging, and voltage imaging. During time-lapse imaging, gradual photooxidation of Met leads to a reduced photobleaching rate, mechanistically supporting the thioether pathway hypothesis. Our findings suggest that thioether editing on self-labeling tags is a general strategy to enhance the photostability of fluorophores for advanced time-lapse imaging techniques.
自标记蛋白标签广泛应用于先进的生物成像领域,在该领域中,具有高光子预算的染料比荧光蛋白同类产品表现更优。新的荧光团化学和蛋白质工程都在积极寻求进一步增加染料标记系统发射的光子数量。通过仔细研究荧光团的蛋白质微环境,我们在此提出,近端硫醚基团会对染料标记系统的光稳定性产生负面影响。我们将罗丹明染料在卤代标签(HaloTag)、SNAP标签和TMP标签3上光稳定性的差异归因于SNAP标签和TMP标签3中固有的硫醚键的影响。这种光化学途径促使我们进一步设计出具有更高光稳定性的标签。我们首先表明,TMP标签3.1上的罗丹明染料采用邻近诱导的硫酰氟交换反应(SuFEx反应)而非硫醇 - 丙烯酰胺加成反应来取代硫醚加合物,其光子预算与卤代标签上的配体相当。我们进一步展示,通过突变荧光团口袋附近的甲硫氨酸,当用红色和远红色罗丹明标记时,卤代标签:M175L的光稳定性通常可提高多达四倍。卤代标签修饰的增强通过单分子荧光成像、活细胞荧光成像和电压成像得到了证明。在延时成像过程中,甲硫氨酸的逐渐光氧化导致光漂白速率降低,从机制上支持了硫醚途径假说。我们的研究结果表明,对自标记标签进行硫醚编辑是增强荧光团光稳定性以用于先进延时成像技术的通用策略。