van Bussel Erik M, Nasrabadi Jafar, Magré Joëll, Arbabi Vahid, Willemsen Koen, Kaptein Bart J, Meij Bjorn P, Tryfonidou Marianna A, van der Wal Bart C H, Weinans Harrie H, Sakkers Ralph J B
From the Department of Orthopedic Surgery (Dr. van Bussel, Nasrabadi, Dr. Arbabi, Dr. van der Wal, Dr. Weinans, Dr. Sakkers), University Medical Center Utrecht, Utrecht, the Netherlands; the 3D Lab (Dr. Magré, Dr. Willemsen), Division of Surgical Specialties, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Orthopedic Surgery (Dr. Kaptein), Leiden University Medical Center, Leiden, the Netherlands; the Department of Clinical Sciences (Dr. Meij, Dr. Tryfonidou), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; and the Orthopaedic-Biomechanics Research Group (Nasrabadi, Dr. Arbabi), Department of Mechanical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
J Am Acad Orthop Surg Glob Res Rev. 2025 Jul 17;9(7). doi: 10.5435/JAAOSGlobal-D-24-00382. eCollection 2025 Jul 1.
Adolescents with severe dysplasia of the hip regularly undergo a periacetabular osteotomy to prevent pain and early osteoarthritis. Unfortunately, this procedure is not suited for severe dysplasia with a non-congruent-deformed hip joint. The optimal treatment might be a tailor-made biologic optimization of femoral coverage with a shape matching the aberrant anatomy. This study introduces a novel approach using a patient-specific allograft shelf augmentation based on personalized 3D kinematic planning.
A 17-year-old patient with severe right-sided hip dysplasia underwent 3D CT analysis showing a lateral center-edge angle of -7° and a craniocaudal femoral head coverage of 50%. Using digital augmentation techniques and kinematic simulations, the femoral coverage was optimized while respecting the range of motion. An allograft cortical shelf of a distal femur with a matching surface and curvature as digitally designed was found in the bone bank and implanted at the acetabular rim using patient-specific molds.
After uncomplicated implantation of the patient-specific allograft shelf, the lateral center-edge angle and femoral head coverage increased to 18° and 77% while preserving range of motion. A CT scan at 9-month follow-up showed incorporation of the allograft in the native bone with sustained coverage of the weight-bearing area of the patient-specific allograft shelf.
An acetabular augmentation shelf was digitally designed and implanted using a matching allograft donor in a case of severe hip dysplasia. The excellent and predictable functional and radiologic outcomes suggest that patient-specific allograft bone shelves could be a serious option for adolescents with severe hip dysplasia.
患有严重髋关节发育不良的青少年通常会接受髋臼周围截骨术以预防疼痛和早期骨关节炎。不幸的是,该手术不适用于髋关节非同心变形的严重发育不良。最佳治疗方法可能是根据异常解剖结构定制形状匹配的生物优化股骨覆盖。本研究介绍了一种基于个性化3D运动学规划的患者特异性同种异体骨移植髋臼扩大术的新方法。
一名17岁严重右侧髋关节发育不良患者接受了3D CT分析,结果显示外侧中心边缘角为-7°,股骨头颅尾覆盖度为50%。使用数字扩大技术和运动学模拟,在尊重运动范围的同时优化了股骨覆盖。在骨库中找到了一块远端股骨的同种异体皮质骨板,其表面和曲率与数字设计相匹配,并使用患者特异性模具将其植入髋臼边缘。
在顺利植入患者特异性同种异体骨移植髋臼扩大术后,外侧中心边缘角和股骨头覆盖度分别增加到18°和77%,同时保留了运动范围。9个月随访时的CT扫描显示同种异体骨已融入自体骨,患者特异性同种异体骨移植髋臼扩大术的负重区域持续得到覆盖。
在一例严重髋关节发育不良病例中,使用匹配的同种异体骨供体进行了数字设计并植入了髋臼扩大骨板。良好且可预测的功能和影像学结果表明,患者特异性同种异体骨移植髋臼扩大术可能是严重髋关节发育不良青少年的一种可行选择。