Suppr超能文献

利用机器学习在秀丽隐杆线虫中进行高通量行为筛选以实现药物再利用。

High-throughput behavioral screening in Caenorhabditis elegans using machine learning for drug repurposing.

作者信息

García-Garví Antonio, Sánchez-Salmerón Antonio-José

机构信息

Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain.

出版信息

Sci Rep. 2025 Jul 18;15(1):26140. doi: 10.1038/s41598-025-10370-x.

Abstract

Caenorhabditis elegans is a widely used animal model for researching new disease treatments. In recent years, automated methods have been developed to extract mobility phenotypes and analyse, using statistical methods, whether there are differences between control strains and disease model strains. However, these methods present certain limitations in detecting subtle and non-linear patterns. In this study, we propose a high-throughput screening method based on machine learning, using classifiers that provide a recovery percentage as a measure of treatment effect. We evaluate two main approaches: traditional machine learning models based on behavioral features extracted from the worm's skeleton using Tierpsy Tracker, and deep neural networks that directly analyse video sequences. The results indicate that a Random Forest classifier trained with features extracted by Tierpsy Tracker offers higher accuracy and explainability, making it more suitable than deep learning models for drug testing experiments. Finally, to assess the applicability of our method, we processed data from a published drug repurposing study on unc-80 mutants based on statistical methods. The results highlight the potential of machine learning models to enhance automated phenotypic screening in animal models, providing a more robust and quantitative evaluation of treatment effects by considering more complex and subtle patterns.

摘要

秀丽隐杆线虫是一种广泛用于研究新疾病治疗方法的动物模型。近年来,已经开发出自动化方法来提取运动表型,并使用统计方法分析对照菌株和疾病模型菌株之间是否存在差异。然而,这些方法在检测细微和非线性模式方面存在一定局限性。在本研究中,我们提出了一种基于机器学习的高通量筛选方法,使用分类器提供恢复百分比作为治疗效果的衡量标准。我们评估了两种主要方法:基于使用Tierpsy Tracker从蠕虫骨骼中提取的行为特征的传统机器学习模型,以及直接分析视频序列的深度神经网络。结果表明,使用Tierpsy Tracker提取的特征训练的随机森林分类器具有更高的准确性和可解释性,使其比深度学习模型更适合药物测试实验。最后,为了评估我们方法的适用性,我们基于统计方法处理了一项已发表的关于unc-80突变体药物再利用研究的数据。结果突出了机器学习模型在增强动物模型中自动化表型筛选方面的潜力,通过考虑更复杂和细微的模式,为治疗效果提供更稳健和定量的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验