Suppr超能文献

具有双组分协同效应的混合界面层实现效率达21%的有机太阳能电池。

Organic solar cells with 21% efficiency enabled by a hybrid interfacial layer with dual-component synergy.

作者信息

Li Congqi, Cai Yunhao, Hu Pengfei, Liu Tao, Zhu Lei, Zeng Rui, Han Fei, Zhang Ming, Zhang Meng, Lv Jikai, Ma Yuanxin, Han Dexia, Zhang Meng, Lin Qijie, Xu Jingwen, Yu Na, Qiao Jiawei, Wang Jiarui, Zhang Xin, Xia Jianlong, Tang Zheng, Ye Long, Li Xiaoyi, Xu Zihao, Hao Xiaotao, Peng Qian, Liu Feng, Guo Lin, Huang Hui

机构信息

College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China.

School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.

出版信息

Nat Mater. 2025 Jul 18. doi: 10.1038/s41563-025-02305-8.

Abstract

The cathode interfacial layer (CIL) critically influences electron extraction and charge recombination, thereby playing a pivotal role in organic solar cells (OSCs). However, most state-of-the-art CILs are constrained by limited conductivity, high recombination and poor morphology, which collectively hinder device efficiency and stability. Here we report an inorganic-organic hybrid CIL (AZnO-F3N), developed by a dual-component synergy strategy, which integrates organic material PNDIT-F3N with two-dimensional amorphous zinc oxide. This design leverages the synergistic interactions between two-dimensional amorphous zinc oxide and PNDIT-F3N, resulting in reduced interfacial defect, enhanced conductivity and improved film uniformity. OSCs incorporating the AZnO-F3N CIL exhibit more efficient charge extraction and transport, along with reduced recombination. Consequently, a D18:L8-BO-based binary OSC achieves an efficiency of 20.6%. The introduction of BTP-eC9 as the third component further elevates the efficiency to 21.0% (certified as 20.8%). Moreover, the CIL demonstrates versatility across various active layers, thick-film configuration and flexible devices, underscoring its great potential to advance OSC technology.

摘要

阴极界面层(CIL)对电子提取和电荷复合有着至关重要的影响,因此在有机太阳能电池(OSC)中起着关键作用。然而,大多数先进的CIL受到电导率有限、复合率高和形态不佳的限制,这些因素共同阻碍了器件的效率和稳定性。在此,我们报告了一种通过双组分协同策略开发的无机-有机杂化CIL(AZnO-F3N),它将有机材料PNDIT-F3N与二维非晶态氧化锌相结合。这种设计利用了二维非晶态氧化锌与PNDIT-F3N之间的协同相互作用,减少了界面缺陷,提高了电导率,并改善了薄膜均匀性。采用AZnO-F3N CIL的OSC表现出更高效的电荷提取和传输,同时复合减少。因此,基于D18:L8-BO的二元OSC实现了20.6%的效率。引入BTP-eC9作为第三组分进一步将效率提高到21.0%(认证为20.8%)。此外,该CIL在各种活性层、厚膜结构和柔性器件中都表现出通用性,突显了其推动OSC技术发展的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验