Kuehl Malte, Okabayashi Yusuke, Wong Milagros N, Gernhold Lukas, Gut Gabriele, Kaiser Nico, Schwerk Maria, Gräfe Stefanie K, Ma Frank Y, Tanevski Jovan, Schäfer Philipp S L, Mezher Sam, Sarabia Del Castillo Jacobo, Goldbeck-Strieder Thiago, Zolotareva Olga, Hartung Michael, Delgado Chaves Fernando M, Klinkert Lukas, Gnirck Ann-Christin, Spehr Marc, Fleck David, Joodaki Mehdi, Parra Victor, Shaigan Mina, Diebold Martin, Prinz Marco, Kranz Jennifer, Kux Johan M, Braun Fabian, Kretz Oliver, Wu Hui, Grahammer Florian, Heins Sven, Zimmermann Marina, Haas Fabian, Kylies Dominik, Wanner Nicola, Czogalla Jan, Dumoulin Bernhard, Zolotarev Nikolay, Lindenmeyer Maja, Karlson Pall, Nyengaard Jens R, Sebode Marcial, Weidemann Sören, Wiech Thorsten, Groene Hermann-Josef, Tomas Nicola M, Meyer-Schwesinger Catherine, Kuppe Christoph, Kramann Rafael, Karras Alexandre, Bruneval Patrick, Tharaux Pierre-Louis, Pastene Diego, Yard Benito, Schaub Jennifer A, McCown Phillip J, Pyle Laura, Choi Ye Ji, Yokoo Takashi, Baumbach Jan, Sáez Pablo J, Costa Ivan, Turner Jan-Eric, Hodgin Jeffrey B, Saez-Rodriguez Julio, Huber Tobias B, Bjornstad Petter, Kretzler Matthias, Lenoir Olivia, Nikolic-Paterson David J, Pelkmans Lucas, Bonn Stefan, Puelles Victor G
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Department of Pathology, Aarhus University Hospital, Aarhus, Denmark.
Nature. 2025 Jul 18. doi: 10.1038/s41586-025-09225-2.
The expression and location of proteins in tissues represent key determinants of health and disease. Although recent advances in multiplexed imaging have expanded the number of spatially accessible proteins, the integration of biological layers (that is, cell structure, subcellular domains and signalling activity) remains challenging. This is due to limitations in the compositions of antibody panels and image resolution, which together restrict the scope of image analysis. Here we present pathology-oriented multiplexing (PathoPlex), a scalable, quality-controlled and interpretable framework. It combines highly multiplexed imaging at subcellular resolution with a software package to extract and interpret protein co-expression patterns (clusters) across biological layers. PathoPlex was optimized to map more than 140 commercial antibodies at 80 nm per pixel across 95 iterative imaging cycles and provides pragmatic solutions to enable the simultaneous processing of at least 40 archival biopsy specimens. In a proof-of-concept experiment, we identified epithelial JUN activity as a key switch in immune-mediated kidney disease, thereby demonstrating that clusters can capture relevant pathological features. PathoPlex was then used to analyse human diabetic kidney disease. The framework linked patient-level clusters to organ disfunction and identified disease traits with therapeutic potential (that is, calcium-mediated tubular stress). Finally, PathoPlex was used to reveal renal stress-related clusters in individuals with type 2 diabetes without histological kidney disease. Moreover, tissue-based readouts were generated to assess responses to inhibitors of the glucose cotransporter SGLT2. In summary, PathoPlex paves the way towards democratizing multiplexed imaging and establishing integrative image analysis tools in complex tissues to support the development of next-generation pathology atlases.
组织中蛋白质的表达和定位是健康与疾病的关键决定因素。尽管多重成像技术的最新进展增加了可在空间上检测到的蛋白质数量,但生物层面(即细胞结构、亚细胞结构域和信号传导活性)的整合仍然具有挑战性。这是由于抗体组的组成和图像分辨率存在局限性,共同限制了图像分析的范围。在此,我们介绍面向病理学的多重分析(PathoPlex),这是一个可扩展、质量可控且可解释的框架。它将亚细胞分辨率下的高度多重成像与一个软件包相结合,以提取和解释跨生物层面的蛋白质共表达模式(聚类)。PathoPlex经过优化,可在95个迭代成像周期内以每像素80纳米的分辨率对140多种商业抗体进行映射,并提供实用的解决方案,以实现至少40份存档活检标本的同时处理。在一项概念验证实验中,我们确定上皮细胞JUN活性是免疫介导性肾病的关键开关,从而证明聚类可以捕捉相关的病理特征。然后,PathoPlex被用于分析人类糖尿病肾病。该框架将患者层面的聚类与器官功能障碍联系起来,并识别出具有治疗潜力的疾病特征(即钙介导的肾小管应激)。最后,PathoPlex被用于揭示无组织学肾病的2型糖尿病个体中与肾脏应激相关的聚类。此外,还生成了基于组织的读数,以评估对葡萄糖协同转运蛋白SGLT2抑制剂的反应。总之,PathoPlex为多重成像的普及以及在复杂组织中建立综合图像分析工具铺平了道路,以支持下一代病理学图谱的开发。
Nature. 2025-7-18
Cochrane Database Syst Rev. 2018-7-12
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2021-4-19
2025-1
Nat Rev Urol. 2025-3-27
Am J Physiol Renal Physiol. 2024-11-1
Nat Rev Cancer. 2024-3
Nucleic Acids Res. 2024-1-5
Bioinformatics. 2023-9-2