Suppr超能文献

使用nextNEOpi对肿瘤新抗原进行全面预测。

Comprehensive prediction of tumor neoantigens with nextNEOpi.

作者信息

Ausserhofer Markus, Rieder Dietmar, Finotello Francesca

机构信息

Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria.

Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.

出版信息

Methods Cell Biol. 2025;196:113-137. doi: 10.1016/bs.mcb.2025.01.007. Epub 2025 Feb 6.

Abstract

Immunotherapy has revolutionized cancer treatment by harnessing the immune system to target tumor cells expressing neoantigens. Neoantigens are peptides arising from tumor-specific aberrations that are presented by cancer cells and recognized by T cells. The computational prediction of cancer neoantigens from somatic mutations and other tumor-specific aberrations using patients' sequencing data is key for the investigation of anticancer immune responses and for the design of personalized immunotherapies. However, neoantigen prediction requires the implementation of complex computational pipelines to distill large-scale information from RNA and DNA sequencing data and derive neoantigen candidates together with associated features for their prioritization and selection. We previously developed nextNEOpi, a comprehensive and stand-alone bioinformatics pipeline that not only predicts class-I and -II neoantigens and fusion neoantigens, but also sheds light onto the tumor-immune cell interface, quantifying neoantigen clonality, immunogenicity, and tumor-specific metrics like tumor mutational burden and immune-cell receptor repertoire diversity. In this chapter, we showcase the main capabilities of the nextNEOpi pipeline by analyzing genomic and transcriptomic data generated from multiple biopsies collected from patients with lung cancer.

摘要

免疫疗法通过利用免疫系统靶向表达新抗原的肿瘤细胞,彻底改变了癌症治疗方式。新抗原是由肿瘤特异性畸变产生的肽段,由癌细胞呈递并被T细胞识别。利用患者的测序数据,从体细胞突变和其他肿瘤特异性畸变中对癌症新抗原进行计算预测,对于研究抗癌免疫反应和设计个性化免疫疗法至关重要。然而,新抗原预测需要实施复杂的计算流程,以从RNA和DNA测序数据中提取大规模信息,并推导新抗原候选物及其相关特征,以便对其进行优先级排序和选择。我们之前开发了nextNEOpi,这是一个全面且独立的生物信息学流程,它不仅能预测I类和II类新抗原以及融合新抗原,还能揭示肿瘤与免疫细胞的界面,量化新抗原的克隆性、免疫原性以及肿瘤特异性指标,如肿瘤突变负荷和免疫细胞受体库多样性。在本章中,我们通过分析从肺癌患者采集的多次活检样本中生成的基因组和转录组数据,展示nextNEOpi流程的主要功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验