Suppr超能文献

直接脱氢偶联有助于噻吩在硅表面高效锚定。

Direct dehydrocoupling facilitates efficient thiophene anchoring on silicon surfaces.

作者信息

Li Jingpeng, Zhang Meiyu, Li Wenxuan, Li Zhongshu, Zhu Tingshun, Yang Zhenyu

机构信息

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong, China.

出版信息

Nat Commun. 2025 Jul 19;16(1):6664. doi: 10.1038/s41467-025-62002-7.

Abstract

Silicon is a cornerstone material in electronics and photovoltaics due to its abundance, tunable semiconducting properties, and chemical versatility. Direct anchoring of thiophenes, with their highly delocalized aromatic backbones, onto silicon surfaces offers a promising route to tailor charge carrier migration properties. However, current methods for anchoring thiophenes commonly rely on pre-activation of precursors or transition-metal catalysts. Here, we introduce a catalyst-free radical strategy for direct linkage of thiophenes with Si atoms on organosilanes and silicon surfaces. This method leverages thermally induced homolytic cleavage of Si-H bonds to generate silicon radicals, which undergo efficient hydrosilylation with thiophene rings, forming Si-C linkages and releasing H. We demonstrate the successful application of this approach on silicon surfaces, achieving functionalization with thiophenes that enhance charge carrier mobilities in silicon nanocrystals significantly higher than previously reported alkyl-functionalized SiNCs, indicating the significant potential of catalyst-free dehydrocoupling for advancing silicon-based materials in optoelectronic applications.

摘要

硅因其储量丰富、半导体性能可调以及化学多功能性,成为电子学和光伏领域的基石材料。噻吩具有高度离域的芳香骨架,将其直接锚定在硅表面为定制电荷载流子迁移特性提供了一条有前景的途径。然而,目前锚定噻吩的方法通常依赖于前体的预活化或过渡金属催化剂。在此,我们介绍一种无催化剂的自由基策略,用于在有机硅烷和硅表面将噻吩与硅原子直接连接。该方法利用热诱导的Si-H键均裂产生硅自由基,硅自由基与噻吩环进行高效的硅氢加成反应,形成Si-C键并释放出H。我们展示了该方法在硅表面的成功应用,实现了用噻吩进行功能化,显著提高了硅纳米晶体中的电荷载流子迁移率,比之前报道的烷基功能化硅纳米晶体高得多,这表明无催化剂脱氢偶联在推进硅基材料用于光电子应用方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be73/12276279/c3049f73deb2/41467_2025_62002_Fig1_HTML.jpg

相似文献

1
Direct dehydrocoupling facilitates efficient thiophene anchoring on silicon surfaces.
Nat Commun. 2025 Jul 19;16(1):6664. doi: 10.1038/s41467-025-62002-7.
2
Light-Driven C(sp)-C(sp) Bond Functionalizations Enabled by the PCET Activation of Alcohol O-H Bonds.
Acc Chem Res. 2025 Jul 1;58(13):2061-2071. doi: 10.1021/acs.accounts.5c00246. Epub 2025 Jun 13.
3
Covalent and Strong Metal-Support Interactions for Robust Single-Atom Catalysts.
Acc Chem Res. 2025 Jul 15. doi: 10.1021/acs.accounts.5c00305.
4
Beds, overlays and mattresses for preventing and treating pressure ulcers: an overview of Cochrane Reviews and network meta-analysis.
Cochrane Database Syst Rev. 2021 Aug 16;8(8):CD013761. doi: 10.1002/14651858.CD013761.pub2.
5
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.
Acc Chem Res. 2024 Jul 2;57(13):1827-1838. doi: 10.1021/acs.accounts.4c00227. Epub 2024 Jun 21.
9
Gender differences in the context of interventions for improving health literacy in migrants: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Dec 12;12(12):CD013302. doi: 10.1002/14651858.CD013302.pub2.
10
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.
Cochrane Database Syst Rev. 2015 Jul 27;2015(7):MR000042. doi: 10.1002/14651858.MR000042.pub2.

本文引用的文献

1
Two-Dimensional Semiconductors and Transistors for Future Integrated Circuits.
ACS Nano. 2024 Mar 19;18(11):7739-7768. doi: 10.1021/acsnano.3c10900. Epub 2024 Mar 8.
2
Electrochemical Decarboxylative Silylation of α,β-Unsaturated Carboxylic Acids.
Org Lett. 2023 Jun 23;25(24):4562-4566. doi: 10.1021/acs.orglett.3c01592. Epub 2023 Jun 14.
3
Direct Arylation of Silicon Nanocrystals with Hexadehydro-Diels-Alder-Derived Benzynes.
Angew Chem Int Ed Engl. 2023 Jun 26;62(26):e202304056. doi: 10.1002/anie.202304056. Epub 2023 May 15.
4
Light-Matter Interactions in Hybrid Material Metasurfaces.
Chem Rev. 2022 Oct 12;122(19):15177-15203. doi: 10.1021/acs.chemrev.2c00011. Epub 2022 Jun 28.
5
The Road for 2D Semiconductors in the Silicon Age.
Adv Mater. 2022 Dec;34(48):e2106886. doi: 10.1002/adma.202106886. Epub 2022 Feb 12.
6
Molecular Silicon Clusters.
Chem Rev. 2021 Aug 11;121(15):9674-9718. doi: 10.1021/acs.chemrev.1c00052. Epub 2021 Jun 23.
7
Silylium-Ion-Promoted (5+1) Cycloaddition of Aryl-Substituted Vinylcyclopropanes and Hydrosilanes Involving Aryl Migration.
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):12186-12191. doi: 10.1002/anie.202004320. Epub 2020 May 18.
8
Rare-Earth-Catalyzed C-H Silylation of Aromatic Heterocycles with Hydrosilanes.
Chem Asian J. 2020 Mar 16;15(6):753-756. doi: 10.1002/asia.202000089. Epub 2020 Feb 18.
9
Nickel/copper-cocatalyzed decarbonylative silylation of acyl fluorides.
Chem Commun (Camb). 2019 Aug 29;55(71):10507-10510. doi: 10.1039/c9cc05325e.
10
Electronic structure and VUV photoabsorption measurements of thiophene.
J Chem Phys. 2019 Feb 14;150(6):064303. doi: 10.1063/1.5089505.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验