Niu Xushi, Jiang Lan, Hu Jie, Jia Yazhuo, Zhao Shuxuan, Ma Yunlong, Qiu Zhaoling, Lian Yiling, Zhu Enjun, Ni Junjun
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, P. R. China.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43761-43776. doi: 10.1021/acsami.5c05001. Epub 2025 Jul 20.
Surface engineering is an effective strategy for addressing thrombosis and bacterial infection associated with blood-contacting implants (BCIs). However, most functional surfaces rely on a single mechanism and surface engineering poses substantial processing challenges for chemically inert and difficult-to-process materials such as pyrolytic carbon. Herein, a multifunctional bio-metasurface (LDT surface) synergizing liquid-repellent (L), drag-reduction (D), and turbulence-attenuation (T) strategies is proposed. The LDT surface is achieved through the synergistic interplay of surface texture-mediated flow control and interfacial lubrication effects. The textured LDT surface with microgrooves exhibits a hemodynamic modulation capability, exhibiting an effective turbulence-attenuation effect. The slippery coating on the LDT surface exhibits liquid-repellent and drag-reduction effects, regulating bio (blood and bacteria)-material interfacial interactions. The complex, hierarchical micro-groove, micro-hole, and nano-ripples/gaps/protrusions structures on the surface are fabricated on pyrolytic carbon via temporally shaped femtosecond laser texturing, followed by functional coating. The LDT surface exhibits excellent stability under continuous turbulent flow, with no toxic byproducts generated during processing. The computational fluid dynamics simulation results confirm that the streamwise microgrooves on the wall significantly attenuate turbulence. Compared to the pristine sample surface, the experimental results reveal a 98.2% reduction in platelet adhesion on the LDT surface, with a platelet adhesion rate of only 0.22% and no detected activated platelets, while denatured fibrinogen adhesion decreases by 55.3%. Moreover, the antiadhesion capacities of the LDT surface against and improve by 99.4% and 98.4%, respectively, relative to the pristine sample surface, without viable residual bacteria or biofilm formation. The study offers a promising strategy to mitigate BCI-associated thrombosis and bacterial infection on BCIs, particularly those made from difficult-to-machine materials.
表面工程是解决与血液接触植入物(BCIs)相关的血栓形成和细菌感染的有效策略。然而,大多数功能表面依赖单一机制,并且表面工程对诸如热解碳等化学惰性且难以加工的材料带来了巨大的加工挑战。在此,提出了一种协同疏液(L)、减阻(D)和湍流衰减(T)策略的多功能生物超表面(LDT表面)。LDT表面是通过表面纹理介导的流动控制和界面润滑效应的协同相互作用实现的。具有微槽的纹理化LDT表面具有血液动力学调制能力,表现出有效的湍流衰减效应。LDT表面上的光滑涂层具有疏液和减阻效果,可调节生物(血液和细菌)与材料的界面相互作用。表面上复杂的、分层的微槽、微孔和纳米波纹/间隙/凸起结构通过时间整形飞秒激光纹理化在热解碳上制造,随后进行功能涂层。LDT表面在连续湍流流动下表现出优异的稳定性,加工过程中不会产生有毒副产物。计算流体动力学模拟结果证实,壁面上的流向微槽显著衰减湍流。与原始样品表面相比,实验结果表明LDT表面上的血小板粘附减少了98.2%,血小板粘附率仅为0.22%,未检测到活化血小板,同时变性纤维蛋白原粘附减少了55.3%。此外,相对于原始样品表面,LDT表面对 和 的抗粘附能力分别提高了99.4%和98.4%,且没有存活的残留细菌或生物膜形成。该研究为减轻BCIs上与BCI相关的血栓形成和细菌感染提供了一种有前景的策略,特别是对于由难加工材料制成的BCIs。