Centre for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):38631-38644. doi: 10.1021/acsami.4c02371. Epub 2024 Jul 9.
Achievement of a stable surface coating with long-term resistance to biofilm formation remains a challenge. Catechol-based polymerization chemistry and surface deposition are used as tools for surface modification of diverse materials. However, the control of surface deposition of the coating, surface coverage, coating properties, and long-term protection against biofilm formation remain to be solved. We report a new approach based on supramolecular assembly to generate long-acting antibiofilm coating. Here, we utilized catechol chemistry in combination with low molecular weight amphiphilic polymers for the generation of such coatings. Screening studies with diverse low molecular weight (LMW) polymers and different catechols are utilized to identify lead compositions, which resulted in a thick coating with high surface coverage, smoothness, and antibiofilm activity. We have identified that small supramolecular assemblies (∼10 nm) formed from a combination of polydopamine and LMW poly(-vinyl caprolactam) (PVCL) resulted in relatively thick coating (∼300 nm) with excellent surface coverage in comparison to other polymers and catechol combinations. The coating properties, such as thickness (10-300 nm) and surface hydrophilicity (with water contact angle: 20-60°), are readily controlled. The optimal coating composition showed excellent antibiofilm properties with long-term (>28 days) antibiofilm activity against both Gram-negative () and Gram-positive () strains. We further utilized the combination of optimal binary coating with silver to generate a coating with sustained release of silver ions, resulting in killing both adhered and planktonic bacteria and preventing long-term surface bacterial colonization. The new coating method utilizing LMW polymers opens a new avenue for the development of a novel class of thick, long-acting antibiofilm coatings.
实现具有长期抗生物膜形成能力的稳定表面涂层仍然是一个挑战。儿茶酚基聚合化学和表面沉积被用作修饰各种材料表面的工具。然而,仍然需要解决涂层的表面沉积控制、表面覆盖率、涂层性质和长期抗生物膜形成的问题。我们报告了一种基于超分子组装的新方法,用于生成长效抗生物膜涂层。在这里,我们利用儿茶酚化学结合低分子量两亲聚合物来生成这种涂层。利用不同的低分子量(LMW)聚合物和不同儿茶酚进行筛选研究,以确定先导成分,这导致了具有高表面覆盖率、光滑度和抗生物膜活性的厚涂层。我们已经确定,由聚多巴胺和 LMW 聚(-己内酯)(PVCL)组合形成的小超分子组装体(10nm)导致了相对较厚的涂层(300nm),与其他聚合物和儿茶酚组合相比具有优异的表面覆盖率。涂层性质,如厚度(10-300nm)和表面亲水性(水接触角:20-60°),可以很容易地控制。最佳涂层组成表现出优异的抗生物膜性能,具有长期(>28 天)抗革兰氏阴性()和革兰氏阳性()菌株的抗生物膜活性。我们进一步利用最佳二元涂层与银的组合,生成具有持续释放银离子的涂层,从而杀死附着和浮游细菌,并防止长期表面细菌定植。利用 LMW 聚合物的新涂层方法为开发新型厚、长效抗生物膜涂层开辟了新途径。