Suppr超能文献

基于神经网络和智能优化算法的数控龙门机床床身结构多目标优化

Multiobjective optimization for the bed structure of a CNC gantry machine tool based on neural networks and intelligent optimization algorithms.

作者信息

Bai Youjun, Yuan Zhongyang, Yan Yuqing, Liu Shihao

机构信息

School of Electromechanical and Automotive Engineering, Hainan College of Economics and Business, Haikou, China.

School of Mechanical and Electrical Engineering, Hainan University, Haikou, China.

出版信息

Sci Prog. 2025 Jul-Sep;108(3):368504251359073. doi: 10.1177/00368504251359073. Epub 2025 Jul 21.

Abstract

This study proposes a multiobjective optimization design method for the bed structure of CNC gantry machine tools to enhance their mechanical performance. A sensitivity analysis was first conducted to identify the key dimensions affecting the bed's mass and static and dynamic characteristics, which were then selected as optimization variables. Design of experiments was employed to obtain target values under various design variables, and the response surface method combined with neural network algorithms was utilized to approximate and validate the objective functions. Subsequently, the entropy weight method was applied to calculate the weight coefficients of multiple optimization objectives, establishing a comprehensive performance optimization model for the bed structure. Using MATLAB, three intelligent algorithms-simulated annealing, genetic algorithm, and particle swarm optimization-were employed to solve the optimization model. Comparative results before and after optimization demonstrated that the optimized bed structure achieved a maximum deformation reduction of 9.41%, a 5.75% increase in the first-order natural frequency, a 1.23% reduction in maximum stress, and a 0.64% decrease in mass. The proposed optimization method offers a novel approach for simultaneously reducing the weight of structural components while enhancing their static and dynamic performance.

摘要

本研究提出了一种用于数控龙门机床床身结构的多目标优化设计方法,以提高其机械性能。首先进行了敏感性分析,以确定影响床身质量以及静态和动态特性的关键尺寸,然后将这些尺寸选为优化变量。采用实验设计方法来获取各种设计变量下的目标值,并利用响应面法结合神经网络算法来逼近和验证目标函数。随后,应用熵权法计算多个优化目标的权重系数,建立了床身结构的综合性能优化模型。使用MATLAB,采用三种智能算法——模拟退火算法、遗传算法和粒子群优化算法——来求解优化模型。优化前后的对比结果表明,优化后的床身结构最大变形减少了9.41%,一阶固有频率提高了5.75%,最大应力降低了1.23%,质量减少了0.64%。所提出的优化方法为同时减轻结构部件重量并提高其静态和动态性能提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd33/12280551/4771db992ec5/10.1177_00368504251359073-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验