Nicoleau Salina, Valle Ylenia Roger, Tura-Ceide Olga, Armour Chloe H, Barberà Joan Albert, McKinnon Thomas A J, Gopalan Deepa, Wojciak-Stothard Beata
National Heart and Lung Institute, Imperial College London, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain.
Lab Chip. 2025 Jul 21. doi: 10.1039/d5lc00300h.
Chronic thromboembolic pulmonary hypertension (CTEPH) arises from progressive thrombotic occlusion of pulmonary arteries, involving vessel blockage by unresolved thrombi and small vessel arteriopathy. This disrupts blood flow, increases lung pressure, and alters vessel geometry, contributing to endothelial dysfunction. However, the mechanisms remain unclear. To study these interactions, we developed microfluidic 3D models of pulmonary arteries with 30-80% stenosis using CTPAs from CTEPH and acute pulmonary embolism (APE) patients, flow simulations, 3D printing, and soft lithography. Unlike standard circular channels, we designed semi-circular channels enclosed by a coverslip, which computational modelling confirmed closely mimics real vessel flow dynamics. Human pulmonary artery endothelial cells (HPAECs) cultured in 30-80% stenosis channels exhibited increased expression of pro-inflammatory, pro-thrombotic, and pro-angiogenic genes, with responses varying by stenosis severity and location. Cells in post-stenotic dilatation regions (60-80% stenosis) lost alignment and junctional integrity due to disturbed flow. The transcriptional profile of HPAECs from 80% stenosis channels closely resembled that of CTEPH pulmonary endarterectomy specimens. Platelet adhesion, dependent on von Willebrand factor (VWF), varied with stenosis severity and flow rate. Low perfusion rates increased adhesion in stenotic regions, while higher flow rates promoted adhesion post-stenosis. Our patient data-based stenosis models provide a robust platform for studying the effects of vascular geometry on blood flow, endothelial responses, and platelet aggregation, advancing research on CTEPH, pulmonary embolism, and other diseases associated with vascular occlusion.
慢性血栓栓塞性肺动脉高压(CTEPH)源于肺动脉的进行性血栓性闭塞,包括未溶解血栓导致的血管阻塞和小血管动脉病变。这会扰乱血流,增加肺压力,并改变血管形态,导致内皮功能障碍。然而,其机制仍不清楚。为了研究这些相互作用,我们利用来自CTEPH和急性肺栓塞(APE)患者的CTPA,通过微流控3D打印和软光刻技术,构建了狭窄程度为30%-80%的肺动脉微流控3D模型,并进行了血流模拟。与标准圆形通道不同,我们设计了由盖玻片包围的半圆形通道,计算模型证实其能紧密模拟真实血管的血流动力学。在狭窄程度为30%-80%的通道中培养的人肺动脉内皮细胞(HPAECs),促炎、促血栓形成和促血管生成基因的表达增加,其反应因狭窄严重程度和位置而异。由于血流紊乱,狭窄后扩张区域(狭窄60%-80%)的细胞失去排列和连接完整性。来自80%狭窄通道的HPAECs的转录谱与CTEPH肺动脉内膜剥脱术标本的转录谱非常相似。血小板黏附依赖于血管性血友病因子(VWF),随狭窄严重程度和流速而变化。低灌注率增加了狭窄区域的黏附,而较高流速则促进了狭窄后区域的黏附。我们基于患者数据的狭窄模型为研究血管几何形状对血流、内皮反应和血小板聚集的影响提供了一个强大的平台,推动了对CTEPH、肺栓塞及其他与血管闭塞相关疾病的研究。