文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于在极稀疏视图下减轻光声层析成像中伪影的无监督解缠策略。

Unsupervised disentanglement strategy for mitigating artifact in photoacoustic tomography under extremely sparse view.

作者信息

Zhong Wenhua, Li Tianle, Hou Shangkun, Zhang Hongyu, Li Zilong, Wang Guijun, Liu Qiegen, Song Xianlin

机构信息

Nanchang University, School of Information Engineering, Nanchang, China.

Nanchang University, Jiluan Academy, Nanchang, China.

出版信息

Photoacoustics. 2024 May 4;38:100613. doi: 10.1016/j.pacs.2024.100613. eCollection 2024 Aug.


DOI:10.1016/j.pacs.2024.100613
PMID:38764521
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11101706/
Abstract

Traditional methods under sparse view for reconstruction of photoacoustic tomography (PAT) often result in significant artifacts. Here, a novel image to image transformation method based on unsupervised learning artifact disentanglement network (ADN), named PAT-ADN, was proposed to address the issue. This network is equipped with specialized encoders and decoders that are responsible for encoding and decoding the artifacts and content components of unpaired images, respectively. The performance of the proposed PAT-ADN was evaluated using circular phantom data and the animal experimental data. The results demonstrate that PAT-ADN exhibits excellent performance in effectively removing artifacts. In particular, under extremely sparse view (e.g., 16 projections), structural similarity index and peak signal-to-noise ratio are improved by ∼188 % and ∼85 % in experimental data using the proposed method compared to traditional reconstruction methods. PAT-ADN improves the imaging performance of PAT, opening up possibilities for its application in multiple domains.

摘要

稀疏视图下用于光声断层扫描(PAT)重建的传统方法常常会产生显著的伪影。在此,提出了一种基于无监督学习伪影解缠网络(ADN)的新型图像到图像转换方法,名为PAT - ADN,以解决该问题。该网络配备了专门的编码器和解码器,分别负责对未配对图像的伪影和内容成分进行编码和解码。使用圆形体模数据和动物实验数据对所提出的PAT - ADN的性能进行了评估。结果表明,PAT - ADN在有效去除伪影方面表现出优异的性能。特别是,在极稀疏视图(例如16个投影)下,与传统重建方法相比,使用所提出的方法在实验数据中结构相似性指数和峰值信噪比分别提高了约188%和约85%。PAT - ADN提高了PAT的成像性能,为其在多个领域的应用开辟了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/1d72e03ca71e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/6a3a3318a9d5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/29733ac75d2d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/6417b06a1273/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/abd5395fb06c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/5a7d82c6fe3c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/703561bb5331/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/cc7caf372f06/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/46b9a4c1311d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/1d72e03ca71e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/6a3a3318a9d5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/29733ac75d2d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/6417b06a1273/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/abd5395fb06c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/5a7d82c6fe3c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/703561bb5331/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/cc7caf372f06/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/46b9a4c1311d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a235/11101706/1d72e03ca71e/gr9.jpg

相似文献

[1]
Unsupervised disentanglement strategy for mitigating artifact in photoacoustic tomography under extremely sparse view.

Photoacoustics. 2024-5-4

[2]
Artifact removal in photoacoustic tomography with an unsupervised method.

Biomed Opt Express. 2021-9-15

[3]
A New Deep Learning Network for Mitigating Limited-view and Under-sampling Artifacts in Ring-shaped Photoacoustic Tomography.

Comput Med Imaging Graph. 2020-9

[4]
Accelerated model-based iterative reconstruction strategy for sparse-view photoacoustic tomography aided by multi-channel autoencoder priors.

J Biophotonics. 2024-1

[5]
Multiple diffusion models-enhanced extremely limited-view reconstruction strategy for photoacoustic tomography boosted by multi-scale priors.

Photoacoustics. 2024-9-13

[6]
Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography.

Photoacoustics. 2024-5-18

[7]
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction.

IEEE Trans Med Imaging. 2020-3

[8]
Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration.

Photoacoustics. 2023-9-16

[9]
High frame rate (∼3 Hz) circular photoacoustic tomography using single-element ultrasound transducer aided with deep learning.

J Biomed Opt. 2022-6

[10]
QS-ADN: quasi-supervised artifact disentanglement network for low-dose CT image denoising by local similarity among unpaired data.

Phys Med Biol. 2023-10-2

引用本文的文献

[1]
Sparse scanning encoding and neural network decoding for compressed photoacoustic microscopy.

Photoacoustics. 2025-8-6

[2]
Wavelet-enhanced residual optimal transport for Mamba-based image restoration in photoacoustic tomography.

Photoacoustics. 2025-7-7

[3]
Residual-conditioned sparse transformer for photoacoustic image artifact reduction.

Photoacoustics. 2025-5-29

[4]
Zero-Shot Artifact2Artifact: Self-incentive artifact removal for photoacoustic imaging.

Photoacoustics. 2025-4-18

[5]
Intranasal delivery of engineered extracellular vesicles promotes neurofunctional recovery in traumatic brain injury.

J Nanobiotechnology. 2025-3-21

[6]
[A sparse-view cone-beam CT reconstruction algorithm based on bidirectional flow field- guided projection completion].

Nan Fang Yi Ke Da Xue Xue Bao. 2025-2-20

本文引用的文献

[1]
QS-ADN: quasi-supervised artifact disentanglement network for low-dose CT image denoising by local similarity among unpaired data.

Phys Med Biol. 2023-10-2

[2]
Non-Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats.

Adv Sci (Weinh). 2023-1

[3]
Feasibility of a Generative Adversarial Network for Artifact Removal in Experimental Photoacoustic Imaging.

Ultrasound Med Biol. 2022-8

[4]
Advanced Ultrasound and Photoacoustic Imaging in Cardiology.

Sensors (Basel). 2021-11-28

[5]
Artifact removal in photoacoustic tomography with an unsupervised method.

Biomed Opt Express. 2021-9-15

[6]
Photoacoustic computed tomography for functional human brain imaging [Invited].

Biomed Opt Express. 2021-6-15

[7]
High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation.

Nat Commun. 2021-2-9

[8]
A New Deep Learning Network for Mitigating Limited-view and Under-sampling Artifacts in Ring-shaped Photoacoustic Tomography.

Comput Med Imaging Graph. 2020-9

[9]
Spherical Array System for High-Precision Transcranial Ultrasound Stimulation and Optoacoustic Imaging in Rodents.

IEEE Trans Ultrason Ferroelectr Freq Control. 2021-1

[10]
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.

IEEE Trans Med Imaging. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索