Suppr超能文献

基于机器学习的自动质子治疗计划:后处理和剂量模拟对计划稳健性的影响。

Machine learning-based automatic proton therapy planning: Impact of post-processing and dose-mimicking in plan robustness.

机构信息

UCLouvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology Laboratory, Brussels, Belgium.

RaySearch Laboratories, Stockholm, Sweden.

出版信息

Med Phys. 2023 Jul;50(7):4480-4490. doi: 10.1002/mp.16408. Epub 2023 Apr 20.

Abstract

PURPOSE

Automated treatment planning strategies are being widely implemented in clinical routines to reduce inter-planner variability, speed up the optimization process, and improve plan quality. This study aims to evaluate the feasibility and quality of intensity-modulated proton therapy (IMPT) plans generated with four different knowledge-based planning (KBP) pipelines fully integrated into a commercial treatment planning system (TPS).

MATERIALS/METHODS: A data set containing 60 oropharyngeal cancer patients was split into 11 folds, each containing 47 patients for training, five patients for validation, and five patients for testing. A dose prediction model was trained on each of the folds, resulting in a total of 11 models. Three patients were left out in order to assess if the differences introduced between models were significant. From voxel-based dose predictions, we analyze the two steps that follow the dose prediction: post-processing of the predicted dose and dose mimicking (DM). We focused on the effect of post-processing (PP) or no post-processing (NPP) combined with two different DM algorithms for optimization: the one available in the commercial TPS RayStation (RSM) and a simpler isodose-based mimicking (IBM). Using 55 test patients (five test patients for each model), we evaluated the quality and robustness of the plans generated by the four proposed KBP pipelines (PP-RSM, PP-IBM, NPP-RSM, NPP-IBM). After robust evaluation, dose-volume histogram (DVH) metrics in nominal and worst-case scenarios were compared to those of the manually generated plans.

RESULTS

Nominal doses from the four KBP pipelines showed promising results achieving comparable target coverage and improved dose to organs at risk (OARs) compared to the manual plans. However, too optimistic post-processing applied to the dose prediction (i.e. important decrease of the dose to the organs) compromised the robustness of the plans. Even though RSM seemed to partially compensate for the lack of robustness in the PP plans, still 65% of the patients did not achieve the expected robustness levels. NPP-RSM plans seemed to achieve the best trade-off between robustness and OAR sparing.

DISCUSSION/CONCLUSIONS: PP and DM strategies are crucial steps to generate acceptable robust and deliverable IMPT plans from ML-predicted doses. Before the clinical implementation of any KBP pipeline, the PP and DM parameters predefined by the commercial TPS need to be modified accordingly with a comprehensive feedback loop in which the robustness of the final dose calculations is evaluated. With the right choice of PP and DM parameters, KBP strategies have the potential to generate IMPT plans within clinically acceptable levels comparable to plans manually generated by dosimetrists.

摘要

目的

为了减少规划师之间的变异性、加快优化过程并提高计划质量,自动化治疗计划策略正在临床实践中广泛实施。本研究旨在评估四个完全集成到商业治疗计划系统(TPS)中的基于知识的计划(KBP)管道生成的调强质子治疗(IMPT)计划的可行性和质量。

材料/方法:包含 60 例口咽癌患者的数据集被分为 11 组,每组包含 47 例患者用于训练、5 例患者用于验证、5 例患者用于测试。在每组中都训练了一个剂量预测模型,总共得到了 11 个模型。留出了 3 个患者来评估模型之间的差异是否显著。基于体素的剂量预测,我们分析了剂量预测之后的两个步骤:预测剂量的后处理和剂量模拟(DM)。我们专注于后处理(PP)或无后处理(NPP)与两种不同的 DM 算法优化的结合:商业 TPS RayStation(RSM)中的一个和更简单的等剂量模拟(IBM)。使用 55 个测试患者(每个模型 5 个测试患者),我们评估了四个提出的 KBP 管道(PP-RSM、PP-IBM、NPP-RSM、NPP-IBM)生成的计划的质量和稳健性。经过稳健性评估,在名义和最坏情况下的剂量-体积直方图(DVH)指标与手动生成的计划进行了比较。

结果

四个 KBP 管道的名义剂量显示出有希望的结果,与手动计划相比,实现了相似的靶区覆盖率,并改善了对危及器官(OARs)的剂量。然而,对剂量预测应用过于乐观的后处理(即重要的器官剂量下降)损害了计划的稳健性。尽管 RSM 似乎部分弥补了 PP 计划的稳健性不足,但仍有 65%的患者未能达到预期的稳健性水平。NPP-RSM 计划似乎在稳健性和 OAR 保护之间取得了最佳的平衡。

讨论/结论:PP 和 DM 策略是从 ML 预测剂量生成可接受的稳健和可交付的 IMPT 计划的关键步骤。在临床实施任何 KBP 管道之前,需要根据最终剂量计算的稳健性进行全面的反馈循环,对商业 TPS 预定义的 PP 和 DM 参数进行相应修改。通过选择合适的 PP 和 DM 参数,KBP 策略有可能生成与剂量师手动生成的计划可比的、在临床可接受范围内的 IMPT 计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验