Schmidt Jonathan, Schmidt Luca, Strnad Felix M, Ludwig Nicole, Hennig Philipp
University of Tübingen, Tübingen, Germany.
Tübingen AI Center, Tübingen, Germany.
NPJ Clim Atmos Sci. 2025;8(1):270. doi: 10.1038/s41612-025-01157-y. Epub 2025 Jul 18.
Local climate information is crucial for impact assessment and decision-making, yet coarse global climate simulations cannot capture small-scale phenomena. Current statistical downscaling methods infer these phenomena as temporally decoupled spatial patches. However, to preserve physical properties, estimating spatio-temporally coherent high-resolution weather dynamics for multiple variables across long time horizons is crucial. We present a novel generative framework that uses a score-based diffusion model trained on high-resolution reanalysis data to capture the statistical properties of local weather dynamics. After training, we condition on coarse climate model data to generate weather patterns consistent with the aggregate information. As this predictive task is inherently uncertain, we leverage the probabilistic nature of diffusion models and sample multiple trajectories. We evaluate our approach with high-resolution reanalysis information before applying it to the climate model downscaling task. We then demonstrate that the model generates spatially and temporally coherent weather dynamics that align with global climate output.
当地气候信息对于影响评估和决策至关重要,但全球气候粗分辨率模拟无法捕捉小尺度现象。当前的统计降尺度方法将这些现象推断为时间上解耦的空间斑块。然而,为了保留物理特性,在长时间范围内估计多个变量的时空连贯高分辨率天气动态至关重要。我们提出了一种新颖的生成框架,该框架使用基于分数的扩散模型,在高分辨率再分析数据上进行训练,以捕捉当地天气动态的统计特性。训练后,我们以粗分辨率气候模型数据为条件,生成与总体信息一致的天气模式。由于此预测任务本质上具有不确定性,我们利用扩散模型的概率性质并采样多个轨迹。在将我们的方法应用于气候模型降尺度任务之前,我们使用高分辨率再分析信息对其进行评估。然后,我们证明该模型生成的天气动态在空间和时间上是连贯的,并且与全球气候输出一致。