Garcia-Mazas Carla, Bozzato Elia, Araujo Fernandez Jhonathan Angel, Quattrini Federico, Preat Veronique, Sanchez Laura, Csaba Noemi, Garcia-Fuentes Marcos
Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15706, Spain.
UCLouvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute (LDRI), Avenue Mounier 73/B1.73.12, 1200, Brussels, Belgium.
Mater Today Bio. 2025 Jun 25;33:102010. doi: 10.1016/j.mtbio.2025.102010. eCollection 2025 Aug.
Gene therapy presents promising opportunities to target critical pathways in complex cancers like glioblastoma multiforme, though it necessitates the use of efficient delivery vectors. Polyphosphazenes (PPZs) are highly flexible materials that lead to biodegradable, high-performance materials in various applications, including gene delivery. In this work, we synthesized various PPZ derivatives, incorporating primary amines, secondary amines, hydrophilic, and hydrophobic groups, and evaluated their gene transfection capabilities in combination with an anionic polyphosphazene (6MHA-PPZ) that acts as a charge quencher and transfection enhancer. Combining 6MHA-PPZ with a hydrophobic polymer demonstrated the highest gene delivery efficiency and safety, significantly surpassing previous benchmarks. Using these optimized nanoparticles, we delivered a BMP4-expressing plasmid (pBMP4) in glioblastoma models. The pBMP4 nanoparticles, when combined with the chemotherapeutic agent temozolomide (Tz), resulted in significant reductions in tumor volume, improved survival rates in preclinical models, and normalized the expression of drug resistance markers, providing a synergistic antitumoral effect with Tz. This study highlights the potential of PPZ-based nanoparticles for gene delivery and suggests that the combination of pBMP4-NPs and Tz could offer a promising therapeutic strategy for treating glioblastoma.
基因治疗为靶向多形性胶质母细胞瘤等复杂癌症的关键通路提供了有前景的机会,不过这需要使用高效的递送载体。聚磷腈(PPZs)是高度灵活的材料,可在包括基因递送在内的各种应用中产生可生物降解的高性能材料。在这项工作中,我们合成了各种包含伯胺、仲胺、亲水和疏水基团的PPZ衍生物,并评估了它们与用作电荷猝灭剂和转染增强剂的阴离子聚磷腈(6MHA-PPZ)组合后的基因转染能力。将6MHA-PPZ与疏水聚合物结合显示出最高的基因递送效率和安全性,显著超过了先前的基准。使用这些优化的纳米颗粒,我们在胶质母细胞瘤模型中递送了表达骨形态发生蛋白4(BMP4)的质粒(pBMP4)。pBMP4纳米颗粒与化疗药物替莫唑胺(Tz)联合使用时,可显著减小肿瘤体积,提高临床前模型中的生存率,并使耐药标志物的表达正常化,与Tz产生协同抗肿瘤作用。这项研究突出了基于PPZ的纳米颗粒在基因递送方面的潜力,并表明pBMP4纳米颗粒与Tz的组合可为治疗胶质母细胞瘤提供一种有前景的治疗策略。