Gutierrez-Gutierrez Sara, Mellid-Carballal Rocio, Csaba Noemi, Garcia-Fuentes Marcos
Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Centre, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Fundation Institute of Health Research of Santiago (FIDIS), 15706 Santiago de Compostela, Spain.
J Funct Biomater. 2025 Aug 2;16(8):285. doi: 10.3390/jfb16080285.
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure-featuring an inorganic backbone and highly tunable organic side chains-confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide spectrum of functional properties, including the formation of multifunctional nanostructures tailored for specific therapeutic needs. These attributes enable PPZs to address several critical challenges associated with conventional drug delivery systems, such as poor pharmacokinetics and pharmacodynamics. By modulating solubility profiles, enhancing drug stability, enabling targeted delivery, and supporting controlled release, PPZs offer a robust platform for improving therapeutic efficacy and patient outcomes. This review explores the fundamental chemistry, biopharmaceutical characteristics, and biomedical applications of PPZs, particularly emphasizing their role in zero-dimensional nanotherapeutic systems, including various nanoparticle formulations. PPZ-based nanotherapeutics are further examined based on their drug-loading mechanisms, which include electrostatic complexation in polyelectrolytic systems, self-assembly in amphiphilic constructs, and covalent conjugation with active pharmaceutical agents. Together, these strategies underscore the potential of PPZs as a next-generation material for advanced drug delivery platforms.
聚(有机)磷腈(PPZs)越来越被认为是纳米医学中用于药物递送应用的多功能生物材料。它们独特的杂化结构——具有无机主链和高度可调节的有机侧链——赋予了卓越的生物相容性和适应性。通过精确的合成方法,PPZs可以被设计成具有广泛的功能特性,包括形成针对特定治疗需求定制的多功能纳米结构。这些特性使PPZs能够应对与传统药物递送系统相关的几个关键挑战,如不良的药代动力学和药效学。通过调节溶解度、提高药物稳定性、实现靶向递送和支持控释,PPZs提供了一个强大的平台来提高治疗效果和患者预后。本综述探讨了PPZs的基础化学、生物药剂学特性和生物医学应用,特别强调了它们在零维纳米治疗系统中的作用,包括各种纳米颗粒制剂。基于PPZ的纳米治疗剂根据其载药机制进一步研究,这些机制包括在聚电解质系统中的静电络合、在两亲性结构中的自组装以及与活性药物的共价缀合。总之,这些策略强调了PPZs作为先进药物递送平台的下一代材料的潜力。
J Funct Biomater. 2025-8-2
Arch Ital Urol Androl. 2025-6-30
2025-1
Cochrane Database Syst Rev. 2014-4-29
2025-1
Front Public Health. 2025-6-20
J Mater Chem B. 2025-1-22
Mater Today Bio. 2025-6-25
Small Sci. 2022-10-13
ACS Appl Mater Interfaces. 2024-6-26
J Biomed Mater Res B Appl Biomater. 2023-8