Rusch Robert M, Inagaki Emi, Ago Kentaro, Yoshida Tetsu, Ueno Yui, Nonaka Hidenori, Okano Hideyuki, Nakamura Masaya, Shimmura Shigeto
Department of Clinical Regenerative Medicine, Fujita Health University, Tokyo, Japan.
Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
Regen Ther. 2025 Jul 5;30:333-338. doi: 10.1016/j.reth.2025.06.018. eCollection 2025 Dec.
Cell transplantation finds broad applications in medical science, with applications ranging from stem cell therapies to cancer research. Despite its widespread use, inherent risks such as tumor formation and immune rejection necessitate a comprehensive understanding of transplanted cell dynamics. Thus, tracing cellular behavior is a critical aspect of medical research, particularly in the context of cell transplantation. The capacity to precisely monitor and evaluate the behavior of transplanted cells over time is essential for evaluating therapeutic effectiveness, safety profiles, and long-term consequences.Traditional imaging approaches, like Z-stack and overlay images, present challenges due to limitations in sample size, determining cell location and migration, and only observing the one moment of the therapeutical application. However, recent advancements in imaging technologies have significantly improved our ability to trace cellular behavior in vivo. Bioluminescence imaging (BLI) has emerged as a powerful tool for non-invasive, real-time monitoring of cell survival, proliferation, and distribution in animal models. The in vivo imaging system (IVIS) for instance, focuses on its non-invasive nature and versatile applications in real-time investigations. Genetically modified cells express luciferase, allowing for the detection of light emission when luciferin is administered. BLI offers high sensitivity and the ability to track cells over extended periods, providing crucial information about cell engraftment and persistence.
Transfecting human adipose mesenchymal stem cells (adMSCs) with a lentiviral vector encoding firefly luciferase under the CAG promoter (CAG-ffLuc-cp156), which allows to establish a comprehensive understanding of adMSC behavior, distribution, and therapeutic safety, addressing a critical obstacle in the clinical evaluation of stem cell applications. The study tracked transfected adMSCs over seven days, with subsequent analysis of human DNA distribution by Alu-PCR.
Data indicates adMSCs disappear from the recipient by day 7, corroborated by the absence of human DNA in tested organs. The primary objective is to present a methodology for subconjunctival delivery, investigating the biodistribution and migration of adMSCs post-injection, with potential implications for various cell therapies.
This study provides a valuable methodology for investigating cell behavior post-injection, contributing to the optimization of cell therapies for clinical applications. Furthermore, it highlights the safety of applying adMSCs with relatively low potential of tumorgenicity.
细胞移植在医学领域有着广泛应用,涵盖从干细胞疗法到癌症研究等多个方面。尽管其应用广泛,但诸如肿瘤形成和免疫排斥等固有风险使得全面了解移植细胞的动态变化成为必要。因此,追踪细胞行为是医学研究的一个关键方面,尤其是在细胞移植的背景下。随着时间的推移精确监测和评估移植细胞行为的能力对于评估治疗效果、安全性概况以及长期后果至关重要。传统的成像方法,如Z轴堆叠图像和叠加图像,由于样本大小、确定细胞位置和迁移方面的限制,以及只能观察治疗应用的某一时刻,存在诸多挑战。然而,成像技术的最新进展显著提高了我们在体内追踪细胞行为的能力。生物发光成像(BLI)已成为一种强大的工具,可用于在动物模型中对细胞存活、增殖和分布进行非侵入性实时监测。例如,体内成像系统(IVIS)专注于其非侵入性本质以及在实时研究中的广泛应用。经过基因改造的细胞表达荧光素酶,在注入荧光素时能够检测到发光。BLI具有高灵敏度,能够长时间追踪细胞,提供有关细胞植入和持久性的关键信息。
用在CAG启动子(CAG-ffLuc-cp156)控制下编码萤火虫荧光素酶的慢病毒载体转染人脂肪间充质干细胞(adMSCs),这有助于全面了解adMSCs的行为、分布和治疗安全性,解决了干细胞应用临床评估中的一个关键障碍。该研究对转染后的adMSCs进行了七天的追踪,并随后通过Alu-PCR分析人DNA分布。
数据表明,到第7天,adMSCs从受体中消失,这在测试器官中未检测到人类DNA得到了证实。主要目的是提出一种结膜下递送的方法,研究注射后adMSCs的生物分布和迁移,这对各种细胞疗法可能具有重要意义。
本研究为研究注射后细胞行为提供了一种有价值的方法,有助于优化细胞疗法的临床应用。此外,它突出了应用具有相对低致瘤潜力的adMSCs的安全性。