Kapfer Maëlle, Jessen Bjarke S, Eisele Megan E, Fu Matthew, Danielsen Dorte R, Darlington Thomas P, Moore Samuel L, Finney Nathan R, Marchese Ariane, Hsieh Valerie, Majchrzak Paulina, Jiang Zhihao, Biswas Deepnarayan, Dudin Pavel, Avila José, Watanabe Kenji, Taniguchi Takashi, Ulstrup Søren, Bøggild Peter, Schuck P J, Basov Dmitri N, Hone James, Dean Cory R
Department of Physics, Columbia University, New York, NY, USA.
Center for Nanostructured Graphene, Technical University of Denmark, DK-2800, Denmark.
Science. 2023 Aug 11;381(6658):677-681. doi: 10.1126/science.ade9995. Epub 2023 Aug 10.
Moiré superlattices in twisted two-dimensional materials have generated tremendous excitement as a platform for achieving quantum properties on demand. However, the moiré pattern is highly sensitive to the interlayer atomic registry, and current assembly techniques suffer from imprecise control of the average twist angle, spatial inhomogeneity in the local twist angle, and distortions caused by random strain. We manipulated the moiré patterns in hetero- and homobilayers through in-plane bending of monolayer ribbons, using the tip of an atomic force microscope. This technique achieves continuous variation of twist angles with improved twist-angle homogeneity and reduced random strain, resulting in moiré patterns with tunable wavelength and ultralow disorder. Our results may enable detailed studies of ultralow-disorder moiré systems and the realization of precise strain-engineered devices.
扭曲二维材料中的莫尔超晶格作为一种按需实现量子特性的平台,引起了极大的关注。然而,莫尔图案对层间原子配准高度敏感,目前的组装技术存在平均扭曲角控制不精确、局部扭曲角的空间不均匀性以及随机应变引起的畸变等问题。我们使用原子力显微镜的针尖,通过单层带的面内弯曲来操纵异质双层和同质双层中的莫尔图案。该技术实现了扭曲角的连续变化,提高了扭曲角的均匀性并减少了随机应变,从而产生了具有可调波长和超低无序度的莫尔图案。我们的结果可能有助于对超低无序莫尔系统进行详细研究,并实现精确的应变工程器件。