Norstein Emma Stensby, Yasui Kotaro, Kano Takeshi, Ishiguro Akio, Glette Kyrre
University of Oslo, Department of Informatics.
Tohoku University, Frontier Research Institute of Interdisciplinary Sciences, Research Institute of Electrical Communication.
Artif Life. 2025 Sep 4;31(3):321-344. doi: 10.1162/artl_a_00476.
Robot controllers are often optimized for a single robot in a single environment. This approach proves brittle, as such a controller will often fail to produce sensible behavior for a new morphology or environment. In comparison, animal gaits are robust and versatile. By observing animals, and attempting to extract general principles of locomotion from their movement, we aim to design a single, decentralized controller applicable to diverse morphologies and environments. The controller implements the three components of (a) undulation, (b) peristalsis, and (c) leg motion, which we believe are the essential elements in most animal gaits. This work is a first step toward a general controller. Accordingly, the controller has been evaluated on a limited range of simulated centipede-like robot morphologies. The centipede is chosen as inspiration because it moves using both body contractions and legged locomotion. For a controller to work in qualitatively different settings, it must also be able to exhibit qualitatively different behaviors. We find that six different modes of locomotion emerge from our controller in response to environmental and morphological changes. We also find that different parts of the centipede model can exhibit different modes of locomotion, simultaneously, based on local morphological features. This controller can potentially aid in the design or evolution of robots, by quickly testing the potential of a morphology, or be used to get insights about underlying locomotion principles in the centipede.
机器人控制器通常是针对单一环境中的单个机器人进行优化的。这种方法被证明是脆弱的,因为这样的控制器在面对新的形态或环境时往往无法产生合理的行为。相比之下,动物的步态既稳健又通用。通过观察动物,并试图从它们的运动中提取运动的一般原理,我们旨在设计一种适用于多种形态和环境的单一、分散式控制器。该控制器实现了三个组成部分:(a) 波动,(b) 蠕动,以及 (c) 腿部运动,我们认为这些是大多数动物步态的基本要素。这项工作是迈向通用控制器的第一步。因此,该控制器已在有限范围的类似蜈蚣的模拟机器人形态上进行了评估。选择蜈蚣作为灵感来源是因为它既通过身体收缩又通过腿部运动来移动。对于一个要在性质上不同的环境中工作的控制器来说,它还必须能够展现出性质上不同的行为。我们发现,我们的控制器会根据环境和形态变化产生六种不同的运动模式。我们还发现,蜈蚣模型的不同部分可以根据局部形态特征同时展现出不同的运动模式。这个控制器有可能通过快速测试一种形态的潜力来辅助机器人的设计或进化,或者用于深入了解蜈蚣潜在的运动原理。