Baylor College of Medicine, Rice University Houston, TX, USA.
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200246. doi: 10.1098/rsta.2020.0246. Epub 2021 Feb 15.
Recent advances in computing algorithms and hardware have rekindled interest in developing high-accuracy, low-cost models for simulating physical systems. The idea is to replace expensive numerical integration of complex coupled partial differential equations at fine time scales performed on supercomputers, with machine-learned surrogates that efficiently and accurately forecast future system states using data sampled from the underlying system. One particularly popular technique being explored within the weather and climate modelling community is the (ESN), an attractive alternative to other well-known deep learning architectures. Using the classical Lorenz 63 system, and the three tier multi-scale Lorenz 96 system (Thornes T, Duben P, Palmer T. 2017 , 897-908. (doi:10.1002/qj.2974)) as benchmarks, we realize that previously studied state-of-the-art ESNs operate in two distinct regimes, corresponding to low and high spectral radius (LSR/HSR) for the sparse, randomly generated, reservoir recurrence matrix. Using knowledge of the mathematical structure of the Lorenz systems along with systematic ablation and hyperparameter sensitivity analyses, we show that state-of-the-art LSR-ESNs reduce to a polynomial regression model which we call Domain-Driven Regularized Regression (D2R2). Interestingly, D2R2 is a generalization of the well-known SINDy algorithm (Brunton SL, Proctor JL, Kutz JN. 2016 , 3932-3937. (doi:10.1073/pnas.1517384113)). We also show experimentally that LSR-ESNs (Chattopadhyay A, Hassanzadeh P, Subramanian D. 2019 (http://arxiv.org/abs/1906.08829)) outperform HSR ESNs (Pathak J, Hunt B, Girvan M, Lu Z, Ott E. 2018 , 024102. (doi:10.1103/PhysRevLett.120.024102)) while D2R2 dominates both approaches. A significant goal in constructing surrogates is to cope with barriers to scaling in weather prediction and simulation of dynamical systems that are imposed by time and energy consumption in supercomputers. has emerged as a novel approach to helping with scaling. In this paper, we evaluate the performance of three models (LSR-ESN, HSR-ESN and D2R2) by varying the precision or word size of the computation as our inexactness-controlling parameter. For precisions of 64, 32 and 16 bits, we show that, surprisingly, the least expensive D2R2 method yields the most robust results and the greatest savings compared to ESNs. Specifically, D2R2 achieves 68 × in computational savings, with an additional 2 × if precision reductions are also employed, outperforming ESN variants by a large margin. This article is part of the theme issue 'Machine learning for weather and climate modelling'.
最近,计算算法和硬件方面的进展重新燃起了人们对开发高精度、低成本模型以模拟物理系统的兴趣。其想法是用机器学习代理来替代在超级计算机上进行的复杂耦合偏微分方程的昂贵数值积分,这些代理可以使用从基础系统中采样的数据高效且准确地预测未来的系统状态。在天气和气候建模领域中,一种特别受欢迎的技术是 (ESN),它是其他知名深度学习架构的一个有吸引力的替代方案。我们使用经典的 Lorenz 63 系统和三层多尺度 Lorenz 96 系统(Thornes T,Duben P,Palmer T. 2017,897-908.(doi:10.1002/qj.2974))作为基准,实现了以前研究过的最先进的 ESN 可以在两个不同的区域运行,这对应于稀疏、随机生成的储层递归矩阵的低和高谱半径(LSR/HSR)。通过利用 Lorenz 系统的数学结构知识以及系统的消融和超参数敏感性分析,我们表明最先进的 LSR-ESN 可以简化为我们称之为基于领域知识的正则化回归(D2R2)的多项式回归模型。有趣的是,D2R2 是众所周知的 SINDy 算法(Brunton SL,Proctor JL,Kutz JN. 2016,3932-3937.(doi:10.1073/pnas.1517384113))的推广。我们还通过实验表明,LSR-ESN(Chattopadhyay A,Hassanzadeh P,Subramanian D. 2019(http://arxiv.org/abs/1906.08829))优于 HSR ESN(Pathak J,Hunt B,Girvan M,Lu Z,Ott E. 2018,024102.(doi:10.1103/PhysRevLett.120.024102)),而 D2R2 则优于这两种方法。在构建代理时,一个重要的目标是应对超级计算机中的时间和能源消耗对天气预测和动力系统模拟的规模限制。作为一种新的方法,正在帮助实现这一目标。在本文中,我们通过将计算的精度或字长作为我们的不精确性控制参数来评估三种模型(LSR-ESN、HSR-ESN 和 D2R2)的性能。对于 64、32 和 16 位的精度,我们发现令人惊讶的是,最便宜的 D2R2 方法产生了最稳健的结果,并与 ESN 相比节省了最大的计算资源。具体来说,D2R2 实现了 68×的计算节省,如果还采用精度降低方法,则可以额外节省 2×,大大优于 ESN 变体。本文是主题为“机器学习在天气和气候建模中的应用”的特刊的一部分。