Suppr超能文献

核糖体蛋白突变抑制秀丽隐杆线虫mig-17/ADAMTS突变体中的性腺前导细胞迁移缺陷。

Ribosomal protein mutation suppresses gonadal leader cell migration defects in mig-17/ADAMTS mutants in Caenorhabditis elegans.

作者信息

Kim Hon-Song, Mitsuzumi Kaito, Kondo Shohei, Yamaoka Rie, Ihara Shinji, Otsuka Hiroshi, Yoshikata Chizu, Kubota Yukihiko, Tomohiro Takumi, Fujiwara Toshinobu, Kimura Kenji, Motegi Fumio, Shibata Yukimasa, Takahashi Mikiko, Nishiwaki Kiyoji

机构信息

Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan.

Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Japan.

出版信息

Sci Rep. 2025 Jul 21;15(1):26435. doi: 10.1038/s41598-025-10316-3.

Abstract

The migration of gonadal distal tip cells (DTCs) in Caenorhabditis elegans serves as an excellent model for studying the migration of epithelial tubes during organogenesis. Mutations in the mig-17/ADAMTS gene cause misdirected DTC migration during gonad formation, resulting in deformed gonad arms. An amino acid substitution in RPL-20, the ortholog of mammalian RPL18a/eL20, a component of the 60 S ribosomal large subunit, exhibited a slow-growth phenotype and strongly suppressed the mig-17 gonadal defects. Slow-growing mutations clk-1 and clk-2 also suppressed mig-17. Intestine-specific overexpression of mutant RPL-20 protein resulted in a slow-growth phenotype and suppressed the mig-17 gonadal defects, but these effects were much weaker when wild-type RPL-20 was overexpressed, suggesting that the mutant RPL-20 protein acquired a novel function. Analysis of ribosome profiles revealed reduced biogenesis of the 60 S subunit, leading to a reduction of 80 S ribosomes in the rpl-20 mutant. These results suggest that DTC migration defects in mig-17/ADAMTS mutants can be partly suppressed by growth retardation caused by the rpl-20 mutation. While defective ribosome biogenesis may contribute to the observed growth retardation, further investigation is needed to clarify the molecular basis of this phenomenon.

摘要

秀丽隐杆线虫中生殖腺远端顶端细胞(DTCs)的迁移是研究器官发生过程中上皮管迁移的绝佳模型。mig-17/ADAMTS基因的突变会导致生殖腺形成过程中DTC迁移方向错误,从而导致生殖腺臂变形。哺乳动物RPL18a/eL20(60S核糖体大亚基的一个组成部分)的直系同源物RPL-20中的一个氨基酸替换表现出生长缓慢的表型,并强烈抑制mig-17生殖腺缺陷。生长缓慢的突变体clk-1和clk-2也抑制了mig-17。在肠道中特异性过表达突变型RPL-20蛋白会导致生长缓慢的表型,并抑制mig-17生殖腺缺陷,但过表达野生型RPL-20时这些效应要弱得多,这表明突变型RPL-20蛋白获得了新功能。核糖体谱分析显示60S亚基的生物合成减少,导致rpl-20突变体中80S核糖体减少。这些结果表明,mig-17/ADAMTS突变体中的DTC迁移缺陷可以被rpl-20突变引起的生长迟缓部分抑制。虽然核糖体生物合成缺陷可能导致观察到的生长迟缓,但需要进一步研究来阐明这一现象的分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2926/12280101/640ab76d228c/41598_2025_10316_Fig1_HTML.jpg

相似文献

2
Genetic interactions among ADAMTS metalloproteases and basement membrane molecules in cell migration in Caenorhabditis elegans.
PLoS One. 2020 Dec 2;15(12):e0240571. doi: 10.1371/journal.pone.0240571. eCollection 2020.
3
The novel secreted factor MIG-18 acts with MIG-17/ADAMTS to control cell migration in Caenorhabditis elegans.
Genetics. 2014 Feb;196(2):471-9. doi: 10.1534/genetics.113.157685. Epub 2013 Dec 6.
4
The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during C. elegans gonad organogenesis.
Curr Biol. 2024 Jun 3;34(11):2387-2402.e5. doi: 10.1016/j.cub.2024.04.073. Epub 2024 May 21.
5
Mutations in fibulin-1 and collagen IV suppress the short healthspan of mig-17/ADAMTS mutants in Caenorhabditis elegans.
PLoS One. 2024 Jul 9;19(7):e0305396. doi: 10.1371/journal.pone.0305396. eCollection 2024.
6
MIG-17/ADAMTS controls cell migration by recruiting nidogen to the basement membrane in C. elegans.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20804-9. doi: 10.1073/pnas.0804055106. Epub 2008 Dec 22.
7
bHLH transcription factors regulate organ morphogenesis via activation of an ADAMTS protease in C. elegans.
Dev Biol. 2007 Aug 15;308(2):562-71. doi: 10.1016/j.ydbio.2007.05.024. Epub 2007 May 25.
9
FLYWCH transcription factors act in a LIN-42/Period autoregulatory loop during gonad migration in .
bioRxiv. 2025 Jul 11:2025.07.10.664215. doi: 10.1101/2025.07.10.664215.
10
A fibulin-1 homolog interacts with an ADAM protease that controls cell migration in C. elegans.
Curr Biol. 2004 Nov 23;14(22):2011-8. doi: 10.1016/j.cub.2004.10.047.

本文引用的文献

1
Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy.
Signal Transduct Target Ther. 2021 Aug 30;6(1):323. doi: 10.1038/s41392-021-00728-8.
2
CLK-2/TEL2 is a conserved component of the nonsense-mediated mRNA decay pathway.
PLoS One. 2021 Jan 14;16(1):e0244505. doi: 10.1371/journal.pone.0244505. eCollection 2021.
3
Genetic interactions among ADAMTS metalloproteases and basement membrane molecules in cell migration in Caenorhabditis elegans.
PLoS One. 2020 Dec 2;15(12):e0240571. doi: 10.1371/journal.pone.0240571. eCollection 2020.
4
Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding.
Dev Cell. 2020 Jul 6;54(1):60-74.e7. doi: 10.1016/j.devcel.2020.05.022. Epub 2020 Jun 24.
5
Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism.
Nucleic Acids Res. 2020 Jan 24;48(2):770-787. doi: 10.1093/nar/gkz1042.
6
An emerging role for the ribosome as a nexus for post-translational modifications.
Curr Opin Cell Biol. 2017 Apr;45:92-101. doi: 10.1016/j.ceb.2017.02.010. Epub 2017 Apr 23.
8
Netrins and Wnts function redundantly to regulate antero-posterior and dorso-ventral guidance in C. elegans.
PLoS Genet. 2014 Jun 5;10(6):e1004381. doi: 10.1371/journal.pgen.1004381. eCollection 2014 Jun.
9
A new system for naming ribosomal proteins.
Curr Opin Struct Biol. 2014 Feb;24:165-9. doi: 10.1016/j.sbi.2014.01.002. Epub 2014 Feb 10.
10
The novel secreted factor MIG-18 acts with MIG-17/ADAMTS to control cell migration in Caenorhabditis elegans.
Genetics. 2014 Feb;196(2):471-9. doi: 10.1534/genetics.113.157685. Epub 2013 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验