Suppr超能文献

核糖体作为翻译后修饰枢纽的新作用。

An emerging role for the ribosome as a nexus for post-translational modifications.

作者信息

Simsek Deniz, Barna Maria

机构信息

Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.

Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.

出版信息

Curr Opin Cell Biol. 2017 Apr;45:92-101. doi: 10.1016/j.ceb.2017.02.010. Epub 2017 Apr 23.

Abstract

The ribosome is one of life's most ancient molecular machines that has historically been viewed as a backstage participant in gene regulation, translating the genetic code across all kingdoms of life in a rote-like fashion. However, recent studies suggest that intrinsic components of the ribosome can be regulated and diversified as a means to intricately control the expression of the cellular proteome. In this review, we discuss advances in the characterization of ribosome post-translational modifications (PTMs) from past to present. We specifically focus on emerging examples of ribosome phosphorylation and ubiquitylation, which are beginning to showcase that PTMs of the ribosome are versatile, may have functional consequences for translational control, and are intimately linked to human disease. We further highlight the key questions that remain to be addressed to gain a more complete picture of the array of ribosome PTMs and the upstream enzymes that control them, which may endow ribosomes with greater regulatory potential in gene regulation and control of cellular homeostasis.

摘要

核糖体是生命中最古老的分子机器之一,在历史上一直被视为基因调控的幕后参与者,以一种机械的方式在所有生命王国中翻译遗传密码。然而,最近的研究表明,核糖体的内在成分可以被调控和多样化,以此作为一种精细控制细胞蛋白质组表达的手段。在这篇综述中,我们讨论了核糖体翻译后修饰(PTM)表征从过去到现在的进展。我们特别关注核糖体磷酸化和泛素化的新例子,这些例子开始表明核糖体的PTM具有多样性,可能对翻译控制产生功能影响,并且与人类疾病密切相关。我们进一步强调了为更全面了解核糖体PTM阵列及其控制上游酶仍有待解决的关键问题,这些酶可能赋予核糖体在基因调控和细胞稳态控制方面更大的调控潜力。

相似文献

1
An emerging role for the ribosome as a nexus for post-translational modifications.
Curr Opin Cell Biol. 2017 Apr;45:92-101. doi: 10.1016/j.ceb.2017.02.010. Epub 2017 Apr 23.
4
Expanding Role of Ubiquitin in Translational Control.
Int J Mol Sci. 2020 Feb 9;21(3):1151. doi: 10.3390/ijms21031151.
5
Specialized ribosomes: a new frontier in gene regulation and organismal biology.
Nat Rev Mol Cell Biol. 2012 May 23;13(6):355-69. doi: 10.1038/nrm3359.
6
Post-translational modifications: Regulators of neurodegenerative proteinopathies.
Ageing Res Rev. 2021 Jul;68:101336. doi: 10.1016/j.arr.2021.101336. Epub 2021 Mar 26.
7
Does functional specialization of ribosomes really exist?
RNA. 2019 May;25(5):521-538. doi: 10.1261/rna.069823.118. Epub 2019 Feb 7.
8
Post-translational regulation of ubiquitin signaling.
J Cell Biol. 2019 Jun 3;218(6):1776-1786. doi: 10.1083/jcb.201902074. Epub 2019 Apr 18.
9
Quantifying ubiquitin signaling.
Mol Cell. 2015 May 21;58(4):660-76. doi: 10.1016/j.molcel.2015.02.020.

引用本文的文献

2
The ribosome ubiquitination code: fine-tuning translation under stress.
Trends Biochem Sci. 2025 Jul 10. doi: 10.1016/j.tibs.2025.06.009.
3
Impacts of ribosomal RNA sequence variation on gene expression and phenotype.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230379. doi: 10.1098/rstb.2023.0379.
4
Ribosome-associated proteins: unwRAPping ribosome heterogeneity in the twenty-first century.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230378. doi: 10.1098/rstb.2023.0378.
5
Built differently or defective: can RNA exosomopathies cause ribosome heterogeneity?
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230382. doi: 10.1098/rstb.2023.0382.
6
High-throughput approaches for the identification of ribosome heterogeneity.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230381. doi: 10.1098/rstb.2023.0381.
7
RACK1 MARylation regulates translation and stress granules in ovarian cancer cells.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202401101. Epub 2025 Jan 6.
8
Ubiquitin-dependent translation control mechanisms: Degradation and beyond.
Cell Rep. 2024 Dec 24;43(12):115050. doi: 10.1016/j.celrep.2024.115050. Epub 2024 Dec 10.
9
Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors.
EMBO Rep. 2024 Dec;25(12):5478-5506. doi: 10.1038/s44319-024-00297-1. Epub 2024 Oct 28.
10
Post-transcriptional regulation of Dufour's gland reproductive signals in bumble bees.
BMC Genomics. 2024 Oct 17;25(1):976. doi: 10.1186/s12864-024-10873-3.

本文引用的文献

2
ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation.
Mol Cell. 2017 Feb 16;65(4):751-760.e4. doi: 10.1016/j.molcel.2016.12.026. Epub 2017 Jan 26.
3
Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination.
Mol Cell. 2017 Feb 16;65(4):743-750.e4. doi: 10.1016/j.molcel.2016.11.039. Epub 2017 Jan 5.
5
Ribosomal proteins produced in excess are degraded by the ubiquitin-proteasome system.
Mol Biol Cell. 2016 Sep 1;27(17):2642-52. doi: 10.1091/mbc.E16-05-0290. Epub 2016 Jul 6.
6
Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection.
Mol Cell. 2016 Jun 16;62(6):967-981. doi: 10.1016/j.molcel.2016.04.015. Epub 2016 May 19.
7
Pathways to Specialized Ribosomes: The Brussels Lecture.
J Mol Biol. 2016 May 22;428(10 Pt B):2186-94. doi: 10.1016/j.jmb.2015.12.021. Epub 2016 Jan 4.
8
Ribosome-associated protein quality control.
Nat Struct Mol Biol. 2016 Jan;23(1):7-15. doi: 10.1038/nsmb.3147.
9
Ribosomal Protein S6 Phosphorylation: Four Decades of Research.
Int Rev Cell Mol Biol. 2015;320:41-73. doi: 10.1016/bs.ircmb.2015.07.006. Epub 2015 Aug 5.
10
Mechanism of eIF6 release from the nascent 60S ribosomal subunit.
Nat Struct Mol Biol. 2015 Nov;22(11):914-9. doi: 10.1038/nsmb.3112. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验