Suppr超能文献

基于蛋白质序列信息设计线性和环状肽结合物。

Design of linear and cyclic peptide binders from protein sequence information.

作者信息

Li Qiuzhen, Vlachos Efstathios Nikolaos, Bryant Patrick

机构信息

Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Solna, 171 65, Sweden.

出版信息

Commun Chem. 2025 Jul 22;8(1):211. doi: 10.1038/s42004-025-01601-3.

Abstract

Structure prediction technology has transformed protein design, yet key challenges remain, particularly in designing novel functions. Many proteins function through interactions with other proteins, making the rational design of these interactions a central problem. While most efforts focus on large, stable proteins, shorter peptides offer advantages such as lower manufacturing costs, reduced steric hindrance, and improved cell permeability when cyclised. However, their flexibility and limited structural data make them difficult to design. Here, we introduce EvoBind2, a method for designing novel linear and cyclic peptide binders of varying lengths using only the sequence of a target protein. Unlike existing approaches, EvoBind2 does not require prior knowledge of binding sites or predefined binder lengths, making it a fully blind design process. For one target protein, we demonstrate that linear and cyclic peptide binders of different lengths can be designed in a single shot, and adversarial designs can be avoided through orthogonal in silico evaluation.

摘要

结构预测技术已经改变了蛋白质设计,但关键挑战依然存在,尤其是在设计新功能方面。许多蛋白质通过与其他蛋白质相互作用来发挥功能,因此合理设计这些相互作用成为一个核心问题。虽然大多数研究致力于大型稳定蛋白质,但较短的肽具有一些优势,例如生产成本较低、空间位阻较小,以及环化后细胞通透性提高。然而,它们的灵活性和有限的结构数据使其难以设计。在此,我们介绍了EvoBind2,这是一种仅使用目标蛋白质序列来设计不同长度的新型线性和环肽结合剂的方法。与现有方法不同,EvoBind2不需要结合位点的先验知识或预定义的结合剂长度,使其成为一个完全盲目的设计过程。对于一种目标蛋白质,我们证明可以一次性设计出不同长度的线性和环肽结合剂,并且可以通过正交的计算机模拟评估避免对抗性设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c33/12280060/63775649a712/42004_2025_1601_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验