Suppr超能文献

具有工程和深度学习应用的野兔逃逸优化算法。

Hare escape optimization algorithm with applications in engineering and deep learning.

作者信息

Alsamee Doaa, Ramezani Reza

机构信息

Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

出版信息

Sci Rep. 2025 Jul 21;15(1):26405. doi: 10.1038/s41598-025-10289-3.

Abstract

The Hare Escape Optimization (HEO) algorithm is a novel metaheuristic inspired by the evasive movement strategies of hares when pursued by predators. Unlike conventional nature-inspired algorithms, HEO integrates Levy flight dynamics and adaptive directional shifts to enhance the balance between exploration and exploitation, improving its ability to escape local optima and converge efficiently. To validate its effectiveness, HEO was tested against 29 state-of-the-art metaheuristics on 43 benchmark functions from the CEC 2015 and CEC 2020 testbeds, demonstrating superior performance in both unimodal and multimodal landscapes. Beyond benchmark validation, HEO was applied to four complex constrained engineering design problems; spring, welded beam, pressure vessel, and truss optimization where it outperformed leading optimization methods in solution feasibility and computational efficiency. Additionally, HEO was employed to optimize hyperparameters in convolutional neural networks (CNNs) for image classification tasks, significantly enhancing model accuracy and convergence speed. The results indicate that HEO is a robust, adaptable optimization tool with promising applications in both engineering and deep learning. Its unique search mechanism provides a new perspective in metaheuristic optimization, opening pathways for further advancements in intelligent optimization techniques.

摘要

野兔逃逸优化(HEO)算法是一种新颖的元启发式算法,其灵感来源于野兔在被捕食者追捕时的躲避运动策略。与传统的自然启发式算法不同,HEO整合了莱维飞行动力学和自适应方向转移,以增强探索和利用之间的平衡,提高其逃离局部最优并有效收敛的能力。为了验证其有效性,在CEC 2015和CEC 2020测试平台的43个基准函数上,将HEO与29种先进的元启发式算法进行了对比测试,结果表明在单峰和多峰景观中HEO均表现出卓越性能。除了基准验证之外,HEO还被应用于四个复杂的约束工程设计问题;弹簧、焊接梁、压力容器和桁架优化,在解决方案的可行性和计算效率方面,它优于领先的优化方法。此外,HEO被用于优化用于图像分类任务的卷积神经网络(CNN)中的超参数,显著提高了模型准确性和收敛速度。结果表明,HEO是一种强大、适应性强的优化工具,在工程和深度学习中都有广阔的应用前景。其独特的搜索机制为元启发式优化提供了新的视角,为智能优化技术的进一步发展开辟了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验