Martínez-Sellés Manuel, Marina-Breysse Manuel
Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain.
Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain.
J Cardiovasc Dev Dis. 2023 Apr 17;10(4):175. doi: 10.3390/jcdd10040175.
Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.
人工智能(AI)在心电图(ECG)领域的应用日益广泛,可辅助诊断、分层及管理。AI算法能在以下方面帮助临床医生:(1)心律失常、ST段改变、QT间期延长及其他ECG异常的解读与检测;(2)结合或不结合临床变量进行风险预测(预测心律失常、心源性猝死、中风及其他心血管事件);(3)实时监测心脏植入式电子设备和可穿戴设备的ECG信号,并根据时间、持续时间和情况在发生重大变化时向临床医生或患者发出警报;(4)信号处理,通过去除噪声/伪迹/干扰来提高ECG质量和准确性,并提取肉眼不可见的特征(心率变异性、逐搏间期、小波变换、样本级分辨率等);(5)治疗指导,协助患者选择、优化治疗方案、缩短症状至治疗时间并提高成本效益(对ST段抬高患者更早启动心肌梗死急救程序、预测抗心律失常药物或心脏植入式设备治疗的反应、降低心脏毒性风险等);(6)促进ECG数据与其他模式(成像、基因组学、蛋白质组学、生物标志物等)的整合。未来,随着更多数据的获取以及更复杂算法的开发,预计AI在ECG诊断和管理中将发挥越来越重要的作用。