Sun Hao-Di, Wang Yan-Duo, Fang Hui-Qi, Yang Jian, Hua Yu-Tong, Ding Gang, Guo Lan-Ping
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, China Academy of Chinese Medical Sciences, Beijing, China.
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Front Chem. 2025 Jul 7;13:1583666. doi: 10.3389/fchem.2025.1583666. eCollection 2025.
Endophytic fungi from desert plants are prolific producers of structurally unique stress-responsive metabolites. This study investigates the secondary metabolites of Phoma betae A. B. Frank (Didymellaceae), a desert plant endophytic fungus, aiming to discover novel bioactive compounds through advanced molecular networking strategies.
A building blocks-based molecular network (BBMN) strategy was employed to screen the fungal extract. Target compounds were isolated using silica gel and ODS column chromatography, followed by semi-preparative HPLC purification. Structural elucidation was achieved through comprehensive NMR spectroscopy, mass fragmentation pathway analysis, and electronic circular dichroism (ECD) calculations. Cytotoxicity was evaluated against HeLa and A549 cancer cell lines using CCK-8 assays.
Three compounds were characterized:Phomaderide (3), a unique (6/5/4/5/6) spiro-cyclic dimer formed via stereoselective [2+2] photocycloaddition of two phaeosphaeride A (1) monomers. Its biosynthetic precursor phaeosphaeride A (1). A new hydroxylated analog, phaeosphaeride C (2). Compounds 2 and 3 exhibited moderate cytotoxicity against HeLa (IC 29.97-39.15 μM) and A549 cells (IC 30.47-58.33 μM).
This work highlights the metabolic versatility of extremophilic fungi, demonstrating Phoma betae's capacity to generate architecturally complex molecules. Phomaderide's unprecedented spiro-cyclic dimer scaffold positions it as a promising lead for anticancer drug discovery, with structural modifications (hydroxylation and dimerization) significantly influencing bioactivity. The BBMN strategy proved effective for targeted isolation of structurally related analogs from complex extracts.
沙漠植物内生真菌是结构独特的应激反应代谢产物的丰富生产者。本研究调查了沙漠植物内生真菌甜菜茎点霉A. B. Frank(座囊菌科)的次生代谢产物,旨在通过先进的分子网络策略发现新型生物活性化合物。
采用基于结构单元的分子网络(BBMN)策略筛选真菌提取物。使用硅胶和ODS柱色谱分离目标化合物,随后通过半制备高效液相色谱进行纯化。通过综合核磁共振光谱、质谱裂解途径分析和电子圆二色性(ECD)计算进行结构解析。使用CCK-8法评估对HeLa和A549癌细胞系的细胞毒性。
鉴定出三种化合物:Phomaderide(3),一种独特的(6/5/4/5/6)螺环二聚体,由两个球壳菌素A(1)单体通过立体选择性[2+2]光环加成形成。其生物合成前体球壳菌素A(1)。一种新的羟基化类似物,球壳菌素C(2)。化合物2和3对HeLa细胞(IC50为29.97 - 39.15 μM)和A549细胞(IC50为30.47 - 58.33 μM)表现出中等细胞毒性。
这项工作突出了嗜极真菌的代谢多样性,证明了甜菜茎点霉产生结构复杂分子的能力。Phomaderide前所未有的螺环二聚体支架使其成为抗癌药物发现的有前景的先导化合物,结构修饰(羟基化和二聚化)显著影响生物活性。BBMN策略被证明对于从复杂提取物中靶向分离结构相关类似物是有效的。