Milicevic Nemanja, Jenner Lasse, Myasnikov Alexander, Yusupov Marat, Yusupova Gulnara
C R Biol. 2025 Jul 22;348:149-157. doi: 10.5802/crbiol.180.
Protein synthesis involves a critical step where messenger RNA (mRNA) and transfer RNAs (tRNAs) must move in tandem to advance the mRNA reading frame by one codon. This process, known as translocation, is catalyzed by elongation factor G (EF-G) in prokaryotes and elongation factor 2 (eEF2) in archaea and eukaryotes. While eEF2 not only accelerates translocation but also maintains reading frame fidelity, high-resolution structural insights into eukaryotic translocation have remained limited compared to the extensively studied prokaryotic system. In our recently published study, we employed cryogenic-electron microscopy (cryo-EM) to determine ten high-resolution reconstructions of the elongating eukaryotic ribosome in complex with the full translocation module, including mRNA, peptidyl-tRNA, and deacylated tRNA (Milicevic et al.,2024). Seven of these structures included ribosome-bound, naturally modified eEF2. These snapshots captured the stepwise progression of the mRNA-tRNA2-peptide module through the eukaryotic 80S ribosome, from the initial accommodation of eEF2 until the final stages of translocation (Milicevic et al.,2024). We further showed a complex network of interactions that safeguards against reading frame slippage during translation. Additionally, we illustrated how the accuracy of translocation in eukaryotes is reinforced by specific features of the 80S ribosome and eEF2. Finally, we suggested that diphthamide, a conserved post-translational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon pairing, but also restricts Wobble geometry of the second base pair.
蛋白质合成涉及一个关键步骤,即信使核糖核酸(mRNA)和转运核糖核酸(tRNA)必须协同移动,以使mRNA阅读框向前移动一个密码子。这个过程称为转位,在原核生物中由延伸因子G(EF-G)催化,在古细菌和真核生物中由延伸因子2(eEF2)催化。虽然eEF2不仅能加速转位,还能维持阅读框的保真度,但与经过广泛研究的原核生物系统相比,对真核生物转位的高分辨率结构认识仍然有限。在我们最近发表的研究中,我们利用低温电子显微镜(cryo-EM)确定了与完整转位模块(包括mRNA、肽基-tRNA和脱酰基tRNA)结合的延伸中的真核核糖体的十个高分辨率重建结构(米利切维奇等人,2024年)。其中七个结构包括与核糖体结合的、天然修饰的eEF2。这些快照捕捉了mRNA-tRNA2-肽模块通过真核80S核糖体的逐步进程,从eEF2的初始容纳到转位的最后阶段(米利切维奇等人,2024年)。我们进一步展示了一个复杂的相互作用网络,该网络可防止翻译过程中的阅读框滑移。此外,我们还说明了80S核糖体和eEF2的特定特征如何增强真核生物中转位的准确性。最后,我们提出,二氢乳清酸酰胺是eEF2中一种保守的翻译后修饰,它不仅能稳定正确的沃森-克里克密码子-反密码子配对,还能限制第二个碱基对的摆动几何形状。