Suppr超能文献

真核翻译延伸因子 2(eEF2)催化真核核糖体的反向易位。

Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome.

机构信息

From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.

the Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia.

出版信息

J Biol Chem. 2018 Apr 6;293(14):5220-5229. doi: 10.1074/jbc.RA117.000761. Epub 2018 Feb 16.

Abstract

During protein synthesis, a ribosome moves along the mRNA template and, using aminoacyl-tRNAs, decodes the template nucleotide triplets to assemble a protein amino acid sequence. This movement is accompanied by shifting of mRNA-tRNA complexes within the ribosome in a process called translocation. In living cells, this process proceeds in a unidirectional manner, bringing the ribosome to the 3' end of mRNA, and is catalyzed by the GTPase translation elongation factor 2 (EF-G in prokaryotes and eEF2 in eukaryotes). Interestingly, the possibility of spontaneous backward translocation has been shown for bacterial ribosomes, suggesting a potential reversibility of this reaction. However, this possibility has not yet been tested for eukaryotic ribosomes. Here, using a reconstituted mammalian translation system, we show that the eukaryotic elongation factor eEF2 catalyzes ribosomal reverse translocation at one mRNA triplet. We found that this process requires a cognate tRNA in the ribosomal E-site and cannot occur spontaneously without eEF2. The efficiency of this reaction depended on the concentrations of eEF2 and cognate tRNAs and increased in the presence of nonhydrolyzable GTP analogues. Of note, ADP-ribosylation of eEF2 domain IV blocked reverse translocation, suggesting a crucial role of interactions of this domain with the ribosome for the catalysis of the reaction. In summary, our findings indicate that eEF2 is able to induce ribosomal translocation in forward and backward directions, highlighting the universal mechanism of tRNA-mRNA movements within the ribosome.

摘要

在蛋白质合成过程中,核糖体沿着 mRNA 模板移动,并使用氨酰基-tRNA 解码模板核苷酸三核苷酸以组装蛋白质的氨基酸序列。该运动伴随着核糖体中 mRNA-tRNA 复合物的移位,该过程称为易位。在活细胞中,该过程呈单向进行,将核糖体带到 mRNA 的 3'端,并由 GTP 酶翻译延伸因子 2(原核生物中的 EF-G 和真核生物中的 eEF2)催化。有趣的是,已经证明细菌核糖体具有自发向后易位的可能性,这表明该反应具有潜在的可逆性。然而,尚未针对真核核糖体对此可能性进行测试。在这里,我们使用重组的哺乳动物翻译系统表明,真核延伸因子 eEF2 在一个 mRNA 三核苷酸上催化核糖体的反向易位。我们发现该过程需要核糖体 E 位上的同源 tRNA,并且没有 eEF2 无法自发发生。该反应的效率取决于 eEF2 和同源 tRNA 的浓度,并在存在非水解 GTP 类似物的情况下增加。值得注意的是,eEF2 结构域 IV 的 ADP-核糖基化阻止了反向易位,这表明该结构域与核糖体的相互作用对于该反应的催化具有关键作用。总之,我们的发现表明,eEF2 能够诱导核糖体向前和向后的易位,突出了核糖体中 tRNA-mRNA 运动的普遍机制。

相似文献

4
Miscoding-induced stalling of substrate translocation on the bacterial ribosome.诱导的错译导致细菌核糖体上底物易位停滞。
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8603-E8610. doi: 10.1073/pnas.1707539114. Epub 2017 Sep 25.
5
Structural insights into ribosome translocation.核糖体易位的结构见解。
Wiley Interdiscip Rev RNA. 2016 Sep;7(5):620-36. doi: 10.1002/wrna.1354. Epub 2016 Apr 27.
9
Translocation as continuous movement through the ribosome.易位作为通过核糖体的连续移动。
RNA Biol. 2016 Dec;13(12):1197-1203. doi: 10.1080/15476286.2016.1240140. Epub 2016 Nov 1.

引用本文的文献

本文引用的文献

1
Translocation as continuous movement through the ribosome.易位作为通过核糖体的连续移动。
RNA Biol. 2016 Dec;13(12):1197-1203. doi: 10.1080/15476286.2016.1240140. Epub 2016 Nov 1.
2
Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits.核糖体亚基自发及EF-G加速旋转的动力学
Cell Rep. 2016 Aug 23;16(8):2187-2196. doi: 10.1016/j.celrep.2016.07.051. Epub 2016 Aug 11.
6
Structure of a human translation termination complex.人翻译终止复合物的结构。
Nucleic Acids Res. 2015 Oct 15;43(18):8615-26. doi: 10.1093/nar/gkv909. Epub 2015 Sep 17.
7
Structural basis for stop codon recognition in eukaryotes.真核生物中终止密码子识别的结构基础。
Nature. 2015 Aug 27;524(7566):493-496. doi: 10.1038/nature14896. Epub 2015 Aug 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验