文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

真核核糖体移位的精度机制。

Accuracy mechanism of eukaryotic ribosome translocation.

机构信息

Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, Strasbourg, France.

Urania Therapeutics, Ostwald, France.

出版信息

Nature. 2021 Dec;600(7889):543-546. doi: 10.1038/s41586-021-04131-9. Epub 2021 Dec 1.


DOI:10.1038/s41586-021-04131-9
PMID:34853469
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8674143/
Abstract

Translation of the genetic code into proteins is realized through repetitions of synchronous translocation of messenger RNA (mRNA) and transfer RNAs (tRNA) through the ribosome. In eukaryotes translocation is ensured by elongation factor 2 (eEF2), which catalyses the process and actively contributes to its accuracy. Although numerous studies point to critical roles for both the conserved eukaryotic posttranslational modification diphthamide in eEF2 and tRNA modifications in supporting the accuracy of translocation, detailed molecular mechanisms describing their specific functions are poorly understood. Here we report a high-resolution X-ray structure of the eukaryotic 80S ribosome in a translocation-intermediate state containing mRNA, naturally modified eEF2 and tRNAs. The crystal structure reveals a network of stabilization of codon-anticodon interactions involving diphthamide and the hypermodified nucleoside wybutosine at position 37 of phenylalanine tRNA, which is also known to enhance translation accuracy. The model demonstrates how the decoding centre releases a codon-anticodon duplex, allowing its movement on the ribosome, and emphasizes the function of eEF2 as a 'pawl' defining the directionality of translocation. This model suggests how eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs undergo large-scale molecular reorganizations to ensure maintenance of the mRNA reading frame during the complex process of translocation.

摘要

遗传密码到蛋白质的翻译是通过核糖体中介的信使 RNA(mRNA)和转移 RNA(tRNA)的同步移位重复来实现的。在真核生物中,移位由延伸因子 2(eEF2)来保证,它催化这个过程并积极促进其准确性。尽管有许多研究指出真核后翻译修饰二氢喋呤和 tRNA 修饰在支持移位准确性方面的关键作用,但描述其特定功能的详细分子机制仍知之甚少。在这里,我们报告了一个含有 mRNA、天然修饰的 eEF2 和 tRNA 的真核 80S 核糖体在移位中间态的高分辨率 X 射线结构。晶体结构揭示了一个涉及二氢喋呤和苯丙氨酸 tRNA 第 37 位的超修饰核苷 wybutosine 的密码子-反密码子相互作用稳定网络,这也被认为可以提高翻译准确性。该模型展示了解码中心如何释放密码子-反密码子双链,允许其在核糖体上移动,并强调了 eEF2 作为一个“棘爪”的功能,定义了移位的方向性。该模型表明,80S 核糖体、eEF2 和 tRNA 的真核特异性元件如何通过大规模的分子重组来确保在复杂的移位过程中维持 mRNA 的阅读框。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/8a6a4aa856cf/41586_2021_4131_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/54c84cb94fbe/41586_2021_4131_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/b9afbea2b47e/41586_2021_4131_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/ea8a91bd692a/41586_2021_4131_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/8c079132ad44/41586_2021_4131_Fig4_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/b1d0f78ee337/41586_2021_4131_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/e8438bb374e2/41586_2021_4131_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/20e207ce4197/41586_2021_4131_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/b7d89037bf5a/41586_2021_4131_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/c4b53f093f9c/41586_2021_4131_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/8a6a4aa856cf/41586_2021_4131_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/54c84cb94fbe/41586_2021_4131_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/b9afbea2b47e/41586_2021_4131_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/ea8a91bd692a/41586_2021_4131_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/8c079132ad44/41586_2021_4131_Fig4_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/b1d0f78ee337/41586_2021_4131_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/e8438bb374e2/41586_2021_4131_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/20e207ce4197/41586_2021_4131_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/b7d89037bf5a/41586_2021_4131_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/c4b53f093f9c/41586_2021_4131_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/8674143/8a6a4aa856cf/41586_2021_4131_Fig10_ESM.jpg

相似文献

[1]
Accuracy mechanism of eukaryotic ribosome translocation.

Nature. 2021-12

[2]
mRNA reading frame maintenance during eukaryotic ribosome translocation.

Nature. 2024-1

[3]
Structural Insights into the Role of Diphthamide on Elongation Factor 2 in mRNA Reading-Frame Maintenance.

J Mol Biol. 2018-6-7

[4]
Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome.

J Biol Chem. 2018-2-16

[5]
Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation.

EMBO J. 2004-3-10

[6]
A new understanding of the decoding principle on the ribosome.

Nature. 2012-3-21

[7]
Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation.

EMBO J. 2007-5-2

[8]
High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation.

Nat Commun. 2022-1-25

[9]
Disruption of evolutionarily correlated tRNA elements impairs accurate decoding.

Proc Natl Acad Sci U S A. 2020-6-29

[10]
tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis.

Cell Rep. 2018-12-4

引用本文的文献

[1]
Combined Analysis of Transcriptome and Mendelian Randomization Reveals and as Biomarkers Related to Glucose Metabolism in Sepsis.

J Inflamm Res. 2025-7-30

[2]
Proteomic insights into broiler stress responses to LED lighting: Effects on liver proteome under neutral, cool, and warm spectra.

PLoS One. 2025-7-15

[3]
Ribosome biogenesis: A central player in liver diseases.

Genes Dis. 2025-1-4

[4]
Life is chemistry plus information.

BBA Adv. 2025-4-25

[5]
Mechanism of read-through enhancement by aminoglycosides and mefloquine.

Proc Natl Acad Sci U S A. 2025-4-29

[6]
Alterations in RNA Expression Profile Following and Inoculation into Platelet Concentrates.

Int J Mol Sci. 2025-3-26

[7]
Structural basis for hygromycin B inhibition of yeast pseudouridine-deficient ribosomes.

Sci Adv. 2025-4-4

[8]
Discovery of mono-ADP ribosylating toxins with high structural homology to Pseudomonas exotoxin A.

Commun Biol. 2025-3-11

[9]
Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering.

RNA. 2025-5-16

[10]
Structural insights into dynamics of the BMV TLS aminoacylation.

Nat Commun. 2025-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索