Suppr超能文献

由帕金蛋白介导的线粒体自噬通过蛋白酶体依赖的步骤发生,这些步骤依次针对线粒体的不同亚区进行自噬。

Parkin-dependent mitophagy occurs via proteasome-dependent steps sequentially targeting separate mitochondrial sub-compartments for autophagy.

作者信息

Lechado-Terradas Anna, Schepers Sandra, Zittlau Katharina I, Sharma Karan, Ok Orkun, Fitzgerald Julia C, Geimer Stefan, Westermann Benedikt, Macek Boris, Kahle Philipp J

机构信息

Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Faculty of Medicine, University of Tübingen, Tübingen, Germany.

Department of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany.

出版信息

Autophagy Rep. 2022 Dec 19;1(1):576-602. doi: 10.1080/27694127.2022.2143214. eCollection 2022.

Abstract

PINK1/parkin-dependent mitophagy initially involves (phospho)ubiquitin-directed proteasome-dependent degradation of certain outer mitochondrial membrane (OMM) proteins (e.g. mitofusins) and the recruitment of autophagy adaptors to a group of ubiquitinated OMM proteins, eventually leading to autophagic removal of damaged mitochondria in stressed cells. Here we provide evidence that mitochondrial degradation occurs via stepwise delivery of separate mitochondrial sub-compartments for autophagic degradation. OMM and inner mitochondrial material appears to become separately isolated for autophagolysosomal degradation, not only in parkin-overexpressing HeLa cells but also in cells that express endogenous parkin (human embryonic kidney cells and neural progenitor cells) with slower mitophagy kinetics. The remaining inner mitochondrial material becomes degraded only after much prolonged membrane depolarization, potentially involving another proteasome-sensitive step. The present combined microscopy and proteomics analyses support the idea that cell stress-induced parkin-dependent mitophagy is a complex multi-step process with distinct mitochondrial sub-compartments being separately targeted for autophagic degradation. BafA, Bafilomycin A; CCCP, carbonyl cyanide 3-chlorophenylhydrazone; COX IV, cytochrome c oxidase subunit IV; CS, citrate synthase; DMEM, Dulbecco's modified Eagle's medium; EGFP, enhanced green fluorescent protein; FBS, fetal bovine serum; IF, immunofluorescence; IMM, inner mitochondrial membrane; KO, knock-out; LC3, microtubule-associated protein 1 light chain 3; MDVs, mitochondria-derived vesicles; MFN, mitofusin; NPCs, neural progenitor cells; OMM, outer mitochondrial membrane; p62/SQSTM, 62kDa protein sequestosome-1; PBS, phosphate-buffered saline; PINK1, phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1; RT, room temperature; SSBP1, single-stranded DNA binding protein 1; TAX1BP1, Tax1-binding protein 1; TEM, transmission electron microscopy, TOM20, translocase of outer mitochondrial membrane 20kDa subunit; TOM70, translocase of outer mitochondrial membrane 70kDa subunit; Ub, ubiquitin; UPS, ubiquitin proteasome system; VDAC, voltage-dependent anion-selective channel protein; WB, Western blot; WT, wild-type.

摘要

PINK1/帕金蛋白依赖性线粒体自噬最初涉及(磷酸化)泛素导向的蛋白酶体依赖性降解某些线粒体外膜(OMM)蛋白(如线粒体融合蛋白),以及自噬衔接蛋白募集到一组泛素化的OMM蛋白上,最终导致应激细胞中受损线粒体被自噬清除。在此,我们提供证据表明线粒体降解是通过将不同的线粒体亚组分逐步递送至自噬降解途径而发生的。OMM和线粒体内物质似乎会分别被隔离以进行自噬溶酶体降解,不仅在过表达帕金蛋白的HeLa细胞中如此,在自噬动力学较慢且表达内源性帕金蛋白的细胞(人胚肾细胞和神经祖细胞)中也是如此。剩余的线粒体内物质只有在长时间膜去极化后才会降解,这可能涉及另一个蛋白酶体敏感步骤。目前的显微镜和蛋白质组学联合分析支持这样一种观点,即细胞应激诱导的帕金蛋白依赖性线粒体自噬是一个复杂的多步骤过程,不同的线粒体亚组分分别成为自噬降解的靶标。BafA,巴弗洛霉素A;CCCP,羰基氰化物3-氯苯腙;COX IV,细胞色素c氧化酶亚基IV;CS,柠檬酸合酶;DMEM,杜氏改良伊格尔培养基;EGFP,增强型绿色荧光蛋白;FBS,胎牛血清;IF,免疫荧光;IMM,线粒体内膜;KO,敲除;LC3,微管相关蛋白1轻链3;MDVs,线粒体衍生囊泡;MFN,线粒体融合蛋白;NPCs,神经祖细胞;OMM,线粒体外膜;p62/SQSTM,62kDa蛋白隔离体1;PBS,磷酸盐缓冲盐水;PINK1,磷酸酶和张力蛋白同源物(PTEN)诱导的假定激酶蛋白1;RT,室温;SSBP1,单链DNA结合蛋白1;TAX1BP1,Tax1结合蛋白1;TEM,透射电子显微镜;TOM20,线粒体外膜转位酶20kDa亚基;TOM70,线粒体外膜转位酶70kDa亚基;Ub,泛素;UPS,泛素蛋白酶体系统;VDAC,电压依赖性阴离子选择性通道蛋白;WB,蛋白质免疫印迹;WT,野生型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验