基于代谢综合征胰岛素抵抗指数(METS-IR)和SPISE指数的列线图用于预测2型糖尿病轻度认知障碍的研究
Development of a nomogram based on METS-IR and SPISE index for predicting mild cognitive impairment in type 2 diabetes mellitus.
作者信息
Tong Niu, Kunyu Liu, Xueling Zhou, Ruoyu Sun, Diejing Niu, Shaohua Wang, Yang Yuan
机构信息
Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
School of Medicine, Southeast University, Nanjing, China.
出版信息
J Endocrinol Invest. 2025 Jul 22. doi: 10.1007/s40618-025-02629-x.
BACKGROUND
Insulin resistance (IR) is central to metabolic syndrome and contributes to the development of type 2 diabetes mellitus (T2DM) as well as mild cognitive impairment (MCI). Several low-cost surrogate markers have been proposed to assess IR, such as the triglyceride-glucose (TyG) index, TyG-BMI, TG/HDL-C, metabolic score for insulin resistance (METS-IR), and single-point insulin sensitivity estimator (SPISE). This study aimed to develop nomogram models integrating these indices with clinical data to predict MCI in patients with T2DM.
METHODS
A total of 600 patients diagnosed with T2DM were recruited. Demographic, clinical, and biochemical parameters were documented, and cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE). Logistic regression analyses identified predictors of MCI, and receiver operating characteristic (ROC) curves evaluated their predictive accuracy. Two nomogram models were constructed: Model 1 included METS-IR, age, sex, education level, and hypertension; Model 2 substituted SPISE for METS-IR, retaining other clinical variables.
RESULTS
All IR surrogate indices were significantly associated with MCI and reduced MMSE scores (P < 0.001). METS-IR and SPISE exhibited higher predictive accuracy (AUC: METS-IR = 0.809, SPISE = 0.805) compared to TyG, TyG-BMI, and TG/HDL-C, particularly among female participants. Nomogram models demonstrated robust predictive performance (AUC: Model 1 = 0.846; Model 2 = 0.838).
CONCLUSIONS
Nomogram models incorporating METS-IR or SPISE alongside key clinical parameters effectively predicted the risk of MCI among patients with T2DM. These indices notably outperformed other surrogate markers, highlighting their clinical value for early assessment of cognitive risk.
背景
胰岛素抵抗(IR)是代谢综合征的核心,并且促成2型糖尿病(T2DM)以及轻度认知障碍(MCI)的发展。已经提出了几种低成本的替代标志物来评估IR,例如甘油三酯-葡萄糖(TyG)指数、TyG-BMI、TG/HDL-C、胰岛素抵抗代谢评分(METS-IR)和单点胰岛素敏感性估计值(SPISE)。本研究旨在开发将这些指标与临床数据相结合的列线图模型,以预测T2DM患者的MCI。
方法
共招募了600例诊断为T2DM的患者。记录人口统计学、临床和生化参数,并使用蒙特利尔认知评估(MoCA)和简易精神状态检查表(MMSE)评估认知表现。逻辑回归分析确定了MCI的预测因素,并且受试者工作特征(ROC)曲线评估了它们的预测准确性。构建了两个列线图模型:模型1包括METS-IR、年龄、性别、教育水平和高血压;模型2用SPISE替代METS-IR,保留其他临床变量。
结果
所有IR替代指标均与MCI显著相关,并且MMSE评分降低(P < 0.001)。与TyG、TyG-BMI和TG/HDL-C相比,METS-IR和SPISE表现出更高的预测准确性(AUC:METS-IR = 0.809,SPISE = 0.805),尤其是在女性参与者中。列线图模型显示出强大的预测性能(AUC:模型1 = 0.846;模型2 = 0.838)。
结论
结合METS-IR或SPISE以及关键临床参数的列线图模型有效地预测了T2DM患者发生MCI的风险。这些指标明显优于其他替代标志物,突出了它们在早期评估认知风险方面的临床价值。