Fuentes Tracy L, McCord Kieren H, Martell Max J, Antonopoulos Chrissi A
Pacific Northwest National Laboratory, Richland, WA, USA.
Sci Data. 2025 Jul 21;12(1):1273. doi: 10.1038/s41597-025-05335-8.
Household occupant behavior and decision-making dynamics substantially impact technology uptake and residential building energy performance. Although significant research underscores the importance of social science in energy studies, few public data with representative samples on household energy decision-making patterns are available. The dataset (UPGRADE-E: Understanding Patterns Guiding Residential Adoption and Decisions about Energy Efficiency) presents 9,919 responses from U.S. residents of single-family and small multifamily homes. Derived from a national-scale internet survey, the dataset contains 391 variables: demographics, building characteristics, home modifications, willingness to adopt new technologies, motivations for making changes, barriers, program participation, trusted information sources, and energy scenarios. Responses were validated via internal consistency checks and comparison with other U.S. national scale datasets. UPGRADE-E advances knowledge of household energy related decision-making, tying demographics, home modifications, and self-reported cognitive drivers together at a scale and breadth that has not been previously achieved. Policymakers and researchers at local, regional, and national levels may leverage this dataset to understand drivers influencing the adoption of key technologies in U.S. homes.
家庭居住者的行为和决策动态对技术采用和住宅建筑能源性能有重大影响。尽管大量研究强调了社会科学在能源研究中的重要性,但关于家庭能源决策模式的具有代表性样本的公开数据却很少。该数据集(UPGRADE-E:理解指导住宅采用和能源效率决策的模式)展示了来自美国独栋和小型多户型住宅居民的9919份回复。该数据集源自一项全国范围的互联网调查,包含391个变量:人口统计学特征、建筑特征、房屋改造、采用新技术的意愿、做出改变的动机、障碍、项目参与情况、可信信息来源以及能源情景。通过内部一致性检查以及与其他美国全国规模数据集的比较对回复进行了验证。UPGRADE-E提升了对家庭能源相关决策的认识,以前所未有的规模和广度将人口统计学特征、房屋改造和自我报告的认知驱动因素联系在一起。地方、区域和国家层面的政策制定者和研究人员可以利用这个数据集来了解影响美国家庭采用关键技术的驱动因素。