Joh Hyungmok, Lian Bin, Hsueh Shaw-Iong, Ma Zhichao, Lee Keng-Jung, Zheng Si-Yang, Fischer Peer, Fan Donglei Emma
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
Nat Commun. 2025 Jul 22;16(1):6743. doi: 10.1038/s41467-025-62070-9.
Microbubbles are an important tool due to their unique mechanical, acoustic, and dynamical properties. Yet, it remains challenging to generate microbubbles quickly in a parallel, biocompatible, and controlled manner. Here, we present an opto-electrochemical method that combines precise light-based projection with low-energy electrolysis, realizing defined microbubble patterns that in turn trigger assembly processes. The size of the bubbles can be controlled from a few to over hundred micrometers with a spatial accuracy of ~2 μm. The minimum required light intensity is only ~0.1 W/cm, several orders of magnitude lower compared to other light-enabled methods. We demonstrate the assembly of prescribed patterns of 40-nm nanocrystals, 200 nm extracellular vesicles, polymer nanospheres, and live bacteria. We show how nanosensor-bacterial-cell arrays can be formed for spectroscopic profiling of metabolites and antibiotic response of bacterial assemblies. The combination of a photoconductor with electrochemical techniques enables low-energy, low-temperature bubble generation, advantageous for large-scale, one-shot patterning of diverse particles in a biocompatible manner. The microbubble-platform is highly versatile and promises new opportunities in nanorobotics, nanomanufacturing, high-throughput bioassays, single cell omics, bioseparation, and drug screening and discovery.
微泡因其独特的机械、声学和动力学特性而成为一种重要工具。然而,以并行、生物相容且可控的方式快速生成微泡仍然具有挑战性。在此,我们提出一种光电化学方法,该方法将精确的基于光的投影与低能量电解相结合,实现特定的微泡图案,进而触发组装过程。气泡大小可在几微米至超过一百微米之间控制,空间精度约为2μm。所需的最小光强度仅约为0.1W/cm,与其他基于光的方法相比低几个数量级。我们展示了40nm纳米晶体、200nm细胞外囊泡、聚合物纳米球和活细菌的规定图案的组装。我们展示了如何形成纳米传感器 - 细菌细胞阵列,用于细菌组装体的代谢物光谱分析和抗生素反应。光电导体与电化学技术的结合能够实现低能量、低温气泡生成,有利于以生物相容的方式对各种颗粒进行大规模一次性图案化。微泡平台具有高度通用性,并有望在纳米机器人技术、纳米制造、高通量生物测定、单细胞组学、生物分离以及药物筛选和发现等领域带来新机遇。