Suppr超能文献

基于ITOC优化的深度学习框架用于煤自燃温度预测:一种耦合的CNN-BiGRU-CBAM模型

Deep learning framework based on ITOC optimization for coal spontaneous combustion temperature prediction: a coupled CNN-BiGRU-CBAM model.

作者信息

Shao Xuming, Liu Wenhao, Bai Gang, Chen Yan, Liu Yu, Guang Jiahe

机构信息

Safety Science and Engineering College, Liaoning Technical University, Huludao, 125105, Liaoning , China.

Guangxi Technological College of Machinery and Electricity, Nanning, 530007, Guangxi, China.

出版信息

Sci Rep. 2025 Jul 23;15(1):26700. doi: 10.1038/s41598-025-11294-2.

Abstract

Coal spontaneous combustion (CSC) poses a significant safety hazard in coal mines, requiring effective prevention and control strategies. Accurate temperature prediction, crucial for assessing coal oxidation stages and combustion risk, underpins early warning systems. This study analyzes programmed heating experimental data from Dongtan Mine coal samples and integrates the coal oxidation-pyrolysis coupled reaction mechanism. Pearson correlation analysis identified six key gas indicators-O₂, CO, C₂H₄, CO/ΔO₂, C₂H₄/C₂H₆, and C₂H₆-highly correlated with spontaneous combustion temperature. Based on these variables, a deep learning framework combining an Improved Tornado Optimization with Coriolis force (ITOC) strategy and a CNN-BiGRU-CBAM model is proposed. The ITOC algorithm incorporates cubic chaotic mapping initialization, quantum entanglement, and Coriolis force perturbation to enhance global optimization. Comparative experiments with five heuristic algorithms demonstrate ITOC's superior accuracy and convergence stability. Key CNN-BiGRU-CBAM hyperparameters-learning rate, BiGRU neuron count, and convolutional kernel size-were jointly optimized by ITOC, resulting in optimal values of 0.0093, 108 neurons, and 8.54, respectively. The dataset was split into training, validation, and test sets at an 8:2:1 ratio. Performance evaluation against benchmark models shows the proposed framework achieves a test set R of 0.9738, MAPE of 4.1254%, MAE of 6.2740, and RMSE of 12.4735. Validation on coal faces in Shandong, Shanxi, and Shaanxi mines confirmed strong generalization and engineering adaptability, with predicted temperature ranges closely matching measurements. The ITOC-CNN-BiGRU-CBAM model offers a promising theoretical and practical approach for intelligent early warning and precise prevention of CSC hazards.

摘要

煤炭自燃(CSC)在煤矿中构成重大安全隐患,需要有效的预防和控制策略。准确的温度预测对于评估煤炭氧化阶段和燃烧风险至关重要,是早期预警系统的基础。本研究分析了东滩煤矿煤样的程序升温实验数据,并整合了煤炭氧化 - 热解耦合反应机理。皮尔逊相关性分析确定了六个关键气体指标——O₂、CO、C₂H₄、CO/ΔO₂、C₂H₄/C₂H₆和C₂H₆——与自燃温度高度相关。基于这些变量,提出了一种结合改进的带科里奥利力的龙卷风优化(ITOC)策略和CNN - BiGRU - CBAM模型的深度学习框架。ITOC算法结合了立方混沌映射初始化、量子纠缠和科里奥利力扰动,以增强全局优化。与五种启发式算法的对比实验证明了ITOC具有更高的精度和收敛稳定性。ITOC联合优化了关键的CNN - BiGRU - CBAM超参数——学习率、BiGRU神经元数量和卷积核大小,其最优值分别为0.0093、108个神经元和8.54。数据集按8:2:1的比例分为训练集、验证集和测试集。与基准模型的性能评估表明,所提出的框架在测试集上的R为0.9738,平均绝对百分比误差(MAPE)为4.1254%,平均绝对误差(MAE)为6.2740,均方根误差(RMSE)为12.4735。在山东、山西和陕西煤矿的煤壁上进行的验证证实了该模型具有很强的泛化能力和工程适应性,预测温度范围与实测值紧密匹配。ITOC - CNN - BiGRU - CBAM模型为煤炭自燃灾害的智能早期预警和精准预防提供了一种有前景的理论和实践方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12284153/00600e93c618/41598_2025_11294_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验