Suppr超能文献

An integrated IKOA-CNN-BiGRU-Attention framework with SHAP explainability for high-precision debris flow hazard prediction in the Nujiang river basin, China.

作者信息

Yang Hao, Wang Tianlong, Fomin Nikita Igorevich, Xiao Shuoting, Liu Liang

机构信息

Institute of Civil Engineering and Architecture, Ural Federal University, Yekaterinburg, Russia.

Ocean College, Zhejiang University, Zhoushan, China.

出版信息

PLoS One. 2025 Jun 24;20(6):e0326587. doi: 10.1371/journal.pone.0326587. eCollection 2025.

Abstract

Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ef/12186985/9c67e4dcbdc2/pone.0326587.g001.jpg

相似文献

4
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
5
Multivariate multi-horizon time-series forecasting for real-time patient monitoring based on cascaded fine tuning of attention-based models.
Comput Biol Med. 2025 Aug;194:110406. doi: 10.1016/j.compbiomed.2025.110406. Epub 2025 Jun 10.
7
Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: a mixed methods review.
Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD010842. doi: 10.1002/14651858.CD010842.pub2.
8

本文引用的文献

1
Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm.
PLoS One. 2024 Mar 5;19(3):e0297364. doi: 10.1371/journal.pone.0297364. eCollection 2024.
3
Risk assessment of debris flow disaster based on the cloud model-Probability fusion method.
PLoS One. 2023 Feb 2;18(2):e0281039. doi: 10.1371/journal.pone.0281039. eCollection 2023.
4
A global temperature control of silicate weathering intensity.
Nat Commun. 2022 Apr 4;13(1):1781. doi: 10.1038/s41467-022-29415-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验