Yang Hao, Wang Tianlong, Fomin Nikita Igorevich, Xiao Shuoting, Liu Liang
Institute of Civil Engineering and Architecture, Ural Federal University, Yekaterinburg, Russia.
Ocean College, Zhejiang University, Zhoushan, China.
PLoS One. 2025 Jun 24;20(6):e0326587. doi: 10.1371/journal.pone.0326587. eCollection 2025.
Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.
由于泥石流具有高度非线性和多变量触发机制,因此对山区的灾害预测构成了持续挑战。本研究提出了一种可解释的深度学习框架,即改进的开普勒优化算法-卷积神经网络-双向门控循环单元-注意力(IKOA-CNN-BiGRU-Attention)模型,用于对中国怒江流域云南段的泥石流灾害进行精确预测。该模型利用159条易发生泥石流的沟壑的数据进行开发和验证,集成了深度卷积、循环和基于注意力的架构,并通过IKOA自动优化超参数。使用SHapley Additive exPlanations(SHAP)增强了模型的可解释性,该方法可量化关键因素的影响。IKOA-CNN-BiGRU-Attention框架始终优于13个基准模型,均方根误差为2.33×10-6,平均绝对误差为1.51×10-6,平均绝对百分比误差为0.006%。该模型在50次重复实验中保持了高稳定性,对20%的输入噪声具有很强的恢复能力,并且在五折交叉验证下具有很强的泛化能力。可解释性分析确定潜在源能量和最大24小时降雨量是主要决定因素,并揭示了泥石流启动背后的双阈值物理机制。这些发现为适应性早期预警和有针对性的风险缓解提供了定量依据,并建立了一个可转移的可解释地质灾害预测框架。