Suppr超能文献

内禀噪声和量子纠缠对XXZ海森堡相互作用自旋模型的几何和动力学性质的影响。

Impacts of intrinsic noise and quantum entanglement on the geometric and dynamical properties of the XXZ Heisenberg interacting spin model.

作者信息

Yachi Mouhcine, Amghar Brahim, Elfakir Jamal, El Falaki Mohammed, Chelloug Samia Allaoua, El-Latif Ahmed A Abd, Slaoui Abdallah

机构信息

Laboratory of Innovation in Science, Technology and Modeling, Faculty of Sciences, Chouaïb Doukkali University, 24000, El Jadida, Morocco.

Laboratory LPNAMME, Laser Physics Group, Department of Physics, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco.

出版信息

Sci Rep. 2025 Jul 23;15(1):26702. doi: 10.1038/s41598-025-12454-0.

Abstract

Understanding how intrinsic decoherence affects the interplay between geometry, dynamics, and entanglement in quantum systems is a central challenge in quantum information science. In this work, we develop a unified framework that explores this interplay for a pair of interacting spins governed by an XXZ-type Heisenberg model under an external magnetic field and intrinsic decoherence. We quantify entanglement using the concurrence measure and examine its evolution under decoherence, revealing that intrinsic noise rapidly suppresses entanglement as it increases. We then analyze the Hilbert-Schmidt and Bures distances between quantum states and show how both the degree of entanglement and the noise rate modulate these distances and their associated quantum speeds. Importantly, we demonstrate that the Hilbert-Schmidt speed is more responsive to entanglement and coherence loss than the Bures speed, making it a powerful tool for probing the geometry of quantum dynamics. Moreover, we solve the quantum brachistochrone problem in the presence of intrinsic decoherence, identifying the minimal evolution time and the corresponding optimal entangled states. Finally, we explore the geometric phase accumulated during the system's evolution. Our results show that decoherence hinders geometric phase accumulation, while entanglement counteracts this effect, enhancing phase stability.

摘要

理解内禀退相干如何影响量子系统中几何、动力学和纠缠之间的相互作用是量子信息科学中的一个核心挑战。在这项工作中,我们开发了一个统一的框架,用于探索在外部磁场和内禀退相干作用下,由XXZ型海森堡模型控制的一对相互作用自旋的这种相互作用。我们使用并发度量来量化纠缠,并研究其在退相干下的演化,结果表明内禀噪声随着其增加而迅速抑制纠缠。然后,我们分析了量子态之间的希尔伯特-施密特距离和布雷斯距离,并展示了纠缠程度和噪声率如何调节这些距离及其相关的量子速度。重要的是,我们证明了希尔伯特-施密特速度比布雷斯速度对纠缠和相干损失更敏感,使其成为探测量子动力学几何的有力工具。此外,我们解决了存在内禀退相干时的量子最短时间问题,确定了最小演化时间和相应的最优纠缠态。最后,我们探索了系统演化过程中积累的几何相位。我们的结果表明,退相干阻碍几何相位积累,而纠缠则抵消这种效应,增强相位稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe52/12284143/8e8fa3b65354/41598_2025_12454_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验