Esnault Cyril, Zine El Aabidine Amal, Robert Marie-Cécile, Cucchiarini Anne, Magat Talha, Pigeot Alexia, Bouchouika Soumya, Garcia-Oliver Encar, Gawron Kevin, Basyuk Eugénia, Karpinska Magdalena A, Kozulic-Pirher Alja, Luo Yu, Verga Daniela, Mourad Raphael, Radulescu Ovidiu, Mergny Jean-Louis, Bertrand Edouard, Andrau Jean-Christophe
Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, University of Montpellier, Montpellier, France.
Institut de Génétique Humaine, CNRS-UMR9002, University of Montpellier, Montpellier, France.
Nat Genet. 2025 Jul 22. doi: 10.1038/s41588-025-02263-6.
Despite their central role in transcription, it has been difficult to define universal sequences associated with eukaryotic promoters. Within the chromatin context, recruitment of transcriptional machinery requires promoter opening, but how DNA elements contribute to this process is unclear. Here we show that G-quadruplex (G4) secondary DNA structures are highly enriched at mammalian promoters. G4s are located at the deepest point of nucleosome exclusion at promoters and correlate with maximum promoter activity. We found that experimental G4s exclude nucleosomes in vivo and in vitro while favouring strong positioning. At model promoters, impairing G4s affected both transcriptional activity and chromatin opening. G4 destabilization also resulted in an inactive promoter state and affected the transition to effective RNA production. Finally, G4 stabilization resulted in global reduction of proximal promoter pausing. Altogether, our data introduce G4s as bona fide promoter elements allowing nucleosome exclusion and facilitating pause-release by RNA polymerase II.
尽管它们在转录中起核心作用,但很难确定与真核启动子相关的通用序列。在染色质环境中,转录机制的募集需要启动子开放,但DNA元件如何促进这一过程尚不清楚。在这里,我们表明G-四链体(G4)二级DNA结构在哺乳动物启动子中高度富集。G4位于启动子核小体排除的最深点,并与最大启动子活性相关。我们发现实验性G4在体内和体外都能排除核小体,同时有利于强定位。在模型启动子中,破坏G4会影响转录活性和染色质开放。G4去稳定化还导致启动子处于无活性状态,并影响向有效RNA产生的转变。最后,G4稳定导致近端启动子暂停的整体减少。总之,我们的数据将G4引入为真正的启动子元件,其允许核小体排除并促进RNA聚合酶II的暂停释放。