Kong Xianghua, Li Yifan, Cai Guolei, Liu Wenchao, Xu Junjie, Liu Chuanfeng, Zhang Guikai, Wang Yilin, Lu Zhiyu, Zhang Jing, Wu Xiaojun, Zhang Dawei, Luo Hao, Jin Song, Ji Hengxing
Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, China.
Angew Chem Int Ed Engl. 2025 Sep 8;64(37):e202510212. doi: 10.1002/anie.202510212. Epub 2025 Jul 23.
Accelerating the sluggish sulfur redox kinetics through electrocatalysis has been regarded as one of the key factors to achieve Li-S batteries of cell-level energy densities exceeding 600 Wh kg. Though single-atom catalysts (SACs), typically with symmetric M-N coordination structures have demonstrated attractive electrocatalytic performance in Li-S batteries, herein we discovered that an asymmetric-coordinated metal center distinctly shifts sulfur redox reaction (SRR) kinetics-from first-order (concentration-dependent) behavior in the symmetric-coordinated SACs-to zero-order (surface-saturated) kinetics, highlighting fundamentally altered reaction pathways, leading to a concurrent polysulfide conversion. Experimental and theoretical studies on the Ni atom-based SACs showed that symmetry breaking raises the Ni d-band center, enabling a monodentate-to-bidentate LiS adsorption transition, which strengthens polysulfide adsorption and shifts the rate-limiting step from sluggish solid-solid transformation (LiS → LiS) to a more favorable liquid-solid conversion (LiS → LiS), effectively lowering the overall energy barrier of the SRR process. Consequently, Li-S cells employing Ni-NPG, a SACs with asymmetric Ni-NP coordination, achieved a specific capacity of 877 mAh g at 4 C. Even under a high sulfur loading of 6 mg cm, the cell retained 92% of its capacity after 200 cycles at 0.2 C, outperforming conventional SACs with symmetric coordination structures.
通过电催化加速迟缓的硫氧化还原动力学被视为实现电池级能量密度超过600 Wh kg的锂硫电池的关键因素之一。尽管单原子催化剂(SACs),通常具有对称的M-N配位结构,在锂硫电池中已展现出有吸引力的电催化性能,但在此我们发现,不对称配位的金属中心显著改变了硫氧化还原反应(SRR)动力学——从对称配位SACs中的一级(浓度依赖)行为转变为零级(表面饱和)动力学,突出了反应路径的根本改变,导致多硫化物的同时转化。基于镍原子的SACs的实验和理论研究表明,对称性破缺提高了镍的d带中心,实现了从单齿到双齿的LiS吸附转变,增强了多硫化物吸附,并将速率限制步骤从迟缓的固-固转化(LiS→LiS)转变为更有利的液-固转化(LiS→LiS),有效降低了SRR过程的整体能垒。因此,采用具有不对称Ni-NP配位的SACs即Ni-NPG的锂硫电池在4 C下实现了877 mAh g的比容量。即使在6 mg cm的高硫负载下,该电池在0.2 C下循环200次后仍保留了92%的容量,优于具有对称配位结构的传统SACs。