Chen Kaihuang, Zhou Jie, Xu Chunbao Charles, Fang Zhiqiang, Yu Le, Chen Chaoji, Qiu Xueqing
State Key Laboratory of Advanced Papermaking and Paper-based Materials, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China.
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
Mater Horiz. 2025 Jul 23. doi: 10.1039/d5mh01003a.
Nanofluidic membranes derived from cellulose-based biomaterials have garnered increasing attention for ion transport and regulation due to their modifiable nature, ordered structures, sustainability, and excellent compatibility. However, their practical applications in ionic circuits, energy conversion, and sensing have been limited by insufficient mechanical strength and suboptimal ion transport properties. In this study, we report ultra-strong, highly ion-conductive bio-membranes fabricated through phosphorylation-assisted cell wall engineering. This process introduces high-density anionic phosphate groups onto cellulose chains while preserving their natural hierarchical alignment across macroscopic to molecular scales. The resulting PhosWood-40 membrane (bio-membranes phosphorylated for 40 minutes) shows exceptional performance, with a record-high ion conductivity of 21.01 mS cm in 1.0 × 10 mol L KCl aqueous solution, an ionic selectivity of 0.95, and a high tensile strength up to 241 MPa under dry conditions and 66 MPa under wet conditions. Phosphorylation enhances the membrane's ionic conductivity by 100-fold and improves cation/anion ratio by 38-fold compared to the unmodified membrane, primarily due to the increased surface charge density and optimized ion channel accessibility. Under simulated conditions of artificial seawater (0.5 mol L) and river water (0.01 mol L), the phosphorylated PhosWood-40 membranes achieve a remarkable output power density of 6.4 W m, surpassing unmodified membranes by 30-fold and outperforming other bio-based nanofluidic systems. This work highlights the potential of renewable and easily modifiable cellulose-based biomaterials for developing high-performance nanofluidic systems.
由纤维素基生物材料衍生的纳米流体膜因其可改性、有序结构、可持续性和优异的相容性,在离子传输和调节方面受到越来越多的关注。然而,它们在离子电路、能量转换和传感方面的实际应用受到机械强度不足和离子传输性能欠佳的限制。在本研究中,我们报告了通过磷酸化辅助细胞壁工程制备的超强、高离子传导性生物膜。该过程在纤维素链上引入高密度阴离子磷酸基团,同时保持其从宏观到分子尺度的天然分级排列。所得的PhosWood-40膜(磷酸化40分钟的生物膜)表现出卓越的性能,在1.0×10 mol L KCl水溶液中具有创纪录的21.01 mS cm的高离子电导率、0.95的离子选择性,在干燥条件下具有高达241 MPa的高拉伸强度,在潮湿条件下为66 MPa。与未改性膜相比,磷酸化使膜的离子电导率提高了100倍,阳离子/阴离子比提高了38倍,这主要归因于表面电荷密度的增加和离子通道可及性的优化。在人工海水(0.5 mol L)和河水(0.01 mol L)的模拟条件下,磷酸化的PhosWood-40膜实现了6.4 W m的显著输出功率密度,比未改性膜高出30倍,优于其他生物基纳米流体系统。这项工作突出了可再生且易于改性的纤维素基生物材料在开发高性能纳米流体系统方面的潜力。