Suppr超能文献

用于纳米流体传感的具有极端离子传输性能的二维几丁质亚纳米片

2D Chitin Sub-Nanosheets with Extreme Ion Transport for Nanofluidic Sensing.

作者信息

Shu Yue, Yuan Kaiyu, Xiang Zhongrun, Chen Pan, Wang Huiqing, Ye Dongdong

机构信息

School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.

School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China.

出版信息

Adv Mater. 2025 Sep 28:e10095. doi: 10.1002/adma.202510095.

Abstract

Nanofluidic membranes possess unique ion-selective transport properties, offering considerable potential for energy harvesting and sensing applications. However, the scarcity of anion-selective membranes has significantly hindered progress in these fields. Herein, the energy disparities among chitin crystalline planes are exploited to selectively cleave the low-energy (020) plane, facilitating the directional exfoliation of Bouligand-structured chitin into 2D sub-nanosheets (CSs) with an average thickness of 0.7 nm and lateral dimensions of 50-100 nm. Simulations and experiments demonstrate that a reduction in thickness significantly enhances both the ion transport flux (1.53 times) and selectivity (1.14 times), which in turn boosts the power output density to 12.95 W m under a 50-fold salinity gradient surpassing all-existing biomass-based nanofluidic membranes (max. 2.87 W m) and the commercial benchmark (5.0 W m). Furthermore, the membranes' extreme ion management capabilities facilitate real-time nanofluidic sensing, as demonstrated in jellyfish cultivation monitoring. This study presents a cost-effective strategy for developing high-performance, positively-charged nanofluidic membranes with exceptional energy harvesting and sensing capabilities, laying the foundation for advanced energy and sensing technologies.

摘要

纳米流体膜具有独特的离子选择性传输特性,在能量收集和传感应用方面具有巨大潜力。然而,阴离子选择性膜的稀缺严重阻碍了这些领域的进展。在此,利用几丁质晶面之间的能量差异选择性地切割低能量(020)平面,促进布利冈结构的几丁质定向剥离成平均厚度为0.7纳米、横向尺寸为50-100纳米的二维亚纳米片(CSs)。模拟和实验表明,厚度的减小显著提高了离子传输通量(1.53倍)和选择性(1.14倍),进而在50倍盐度梯度下将功率输出密度提高到12.95 W m,超过了所有现有的基于生物质的纳米流体膜(最高2.87 W m)和商业基准(5.0 W m)。此外,膜的极端离子管理能力有助于实时纳米流体传感,如在水母养殖监测中所示。本研究提出了一种经济高效的策略,用于开发具有卓越能量收集和传感能力的高性能带正电纳米流体膜,为先进的能量和传感技术奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验