Zhang Mengwei, Jing Yiqi, Tang Jiadong, Wang Shiwen, Liu Zihan, Liu Bing, Zheng Zilong, Zhang Qianqian
State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Nano Lett. 2025 Sep 17;25(37):13857-13865. doi: 10.1021/acs.nanolett.5c03581. Epub 2025 Sep 8.
Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs. Ab initio MD simulations reveal that anions follow a rapid "sequential site-hopping" migration principle within the EDL-confined nanochannels. Classical MD simulations show that optimizing nanosheet layers, surface charge density, and migration pathways improves ion selectivity and permeability, boosting osmotic power output. Guided by these insights, a maximum power density of 5.86 W m is achieved under a 50-fold salinity gradient mimicking seawater/river water, exceeding the benchmark for commercial viability. This work provides an atomic-level understanding of ion transport in 2D-NAMs and theoretical guidance for designing high-performance membranes for scalable osmotic energy harvesting.
具有纳米受限夹层通道和过量表面电荷的二维(2D)纳米流体结构彻底改变了基于膜的反向电渗析系统,通过对双电层(EDL)的强静电筛选展示了高效的渗透能收集。然而,二维纳米流体阴离子选择性膜(2D-NAMs)中的离子传输动力学仍未得到探索。在此,我们结合密度泛函理论和分子动力学(MD)模拟,系统地研究2D-NAMs中的离子传输。从头算MD模拟表明,阴离子在EDL受限的纳米通道内遵循快速的“顺序位点跳跃”迁移原理。经典MD模拟表明,优化纳米片层、表面电荷密度和迁移路径可提高离子选择性和渗透性,增强渗透功率输出。基于这些见解,在模拟海水/河水的50倍盐度梯度下实现了5.86 W m的最大功率密度,超过了商业可行性基准。这项工作提供了对2D-NAMs中离子传输的原子级理解,并为设计用于可扩展渗透能收集的高性能膜提供了理论指导。